[1] Facchinei, F., Pang, J.S.:Finite-dimensional variational inequalities and complementarity problems. Springer, Heidelberg (2003) [2] Gidel, G., Berard, H., Vignoud, G., Vincent, P., Lacoste-Julien, S.:A variational inequality perspective on generative adversarial networks. International Conference on Learning Representations (2018). https://doi.org/10.48550/arXiv.1802.10551 [3] Korpelevich,G.M.:An extragradientmethodfor finding saddle points andfor other problems.Matecon 12, 747-756(1976) [4] Nemirovski, A.S.:Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15, 229-251(2004) [5] Nesterov, Y.:Dual extrapolation and its applications to solving variational inequalities and related problems. Math. Program. 109, 319-344(2007) [6] Juditsky, A., Kwon, J., Moulines, E.:Unifying mirror descent and dual averaging. Math. Program. 2022, 1-38(2022) [7] Popov, L.D.:A modification of the arrow-Hurwicz method for search of saddle points. Math. Notes 28, 845-848(1980) [8] Tseng, P.:A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431-446(2000) [9] Censor, Y., Gibali, A., Reich, S.:The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318-335(2011) [10] Malitsky, Y.V.:Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502-520(2015) [11] Malitsky, Y.V., Tam, M.K.:A forward-backward splitting method for monotone inclusions without cocoercivity. SIAM J. Optim. 30, 1451-1472(2020) [12] Dang, C.D., Lan, G.H.:On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators. Comput. Optim. Appl. 60, 277-310(2015) [13] Zhou, Z., Mertikopoulos, P., Bambos, N., Boyd, S. P., Glynn, P. W.:Stochastic mirror descent in variationally coherent optimization problems. International Conference on Neural Information Processing Systems, pp.7043-7052(2017) [14] Liu, M., Rafique, H., Lin, Q., Yang, T.:First-order convergence theory for weakly-convex-weaklyconcave min-max problems. J. Mach. Learn. Res. 22, 1-34(2021) [15] Diakonikolas, J., Daskalakis, C., Jordan, M. I.:Efficient methods for structured nonconvexnonconcave min-max optimization (2020), arXiv:2011.00364 [16] Kotsalis, G., Lan, G.H., Tian, L.:Simple and optimal methods for stochastic variational inequalities, I:operator extrapolation. SIAM J. Optim. 32, 2041-2073(2022) [17] Lee, S., Kim, D.:Fast extra gradient methods for smooth structured nonconvex-nonconcave minimax problems (2021), arXiv:2106.02326 [18] Grimmer, B., Lu, H., Worah, P., Mirrokni, V.:The landscape of the proximal point method for nonconvex-nonconcave minimax optimization (2020), arXiv:2006.08667 [19] Bauschke, H.H., Bolte, J., Teboulle, M.:A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications. Math. Oper. Res. 42, 330-348(2016) [20] Lu, H., Freund, R.M., Nesterov, Y.:Relatively smooth convex optimization by first-order methods, and applications. SIAM J. Optim. 28, 333-354(2018) [21] Cohen, M. B., Sidford, A., Tian, K., Relative Lipschitzness in extragradient methods and a direct recipe for acceleration (2020), arXiv:2011.06572 [22] Zhang, H.:Extragradient and extrapolation methods with generalized Bregman distances for saddle point problems. Oper. Res. Lett. 50, 329-334(2022) [23] Hiriart-Urruty, J.-B., Lemarechal, C.:Foundations of convex analysis. Springer (2004) [24] Rockafellar, R.T.:Convex analysis. Princeton University Press (2015) [25] Bregman, L.M.:The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200-217(1967) [26] Bauschke, H.H., Borwein, J.M.:Legendre functions and the method of random Bregman projections. J. Convex Anal. 4, 27-67(1997) [27] Kiwiel, K.C.:Free-steering relaxation methods for problems with strictly convex costs and linear constraints. Math. Oper. Res. 22, 326-349(1997) [28] Reem, D., Reich, S., Pierro, A.R.D.:Re-examination of Bregman functions and new properties of their divergences. Optimization 68, 279-348(2019) [29] Kiwiel, K.C.:Proximal minimization methods with generalized Bregman functions. SIAM J. Control Optim. 35, 1142-1168(1997) [30] Beck, A.:First-order methods in optimization. Soc. Ind. Appl. Math.(2017) [31] Sherman, J.:Area-convexity, $\ell$∞ regularization, and undirected multicommodity flow. Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 452-460(2017) [32] Bauschke, H.H., Moursi, W.M., Wang, X.:Generalized monotone operators and their averaged resolvents. Math. Program. 189, 55-74(2021) [33] Zhang, H., Yin, W.:Gradient methods for convex minimization:better rates under weaker conditions. CAM Report 13-17, UCLA (2013) [34] Necoara, I., Nesterov, Y.E., Glineur, F.:Linear convergence of first order methods for non-strongly convex optimization. Math. Program. 175, 69-107(2019) [35] Lai, M.-J., Yin, W.:Augmented $\ell$1 and nuclear-norm models with a globally linearly convergent algorithm. SIAM J. Imaging Sci. 6, 1059-1091(2013) [36] Zhang, H.:The restricted strong convexity revisited:analysis of equivalence to error bound and quadratic growth. Optim. Lett. 11, 817-833(2017) [37] Nemirovsky, A.S., Yudin, D.B.:Problem complexity and method efficiency in optimization. Wiley, Chichester (1983) [38] Beck, A., Teboulle, M.:Mirror descent and nonlinear projected subgradient methods for convex optimization. Oper. Res. Lett. 31, 167-175(2003) [39] Bubeck, S.:Convex optimization:algorithms and complexity. Found. Trends Mach. Learn. 8, 231-357(2014) [40] Maddison, C.J., Paulin, D., Teh, Y.W., Doucet, A.:Dual space preconditioning for gradient descent. SIAM J. Optim. 31, 991-1016(2021) [41] Hsieh, Y.-G., Iutzeler, F., Malick, J., Mertikopoulos, P.:On the convergence of single-call stochastic extra-gradient methods. Adv. Neural Inf. Process. Syst.(2019) [42] Wei, C.-Y., Lee, C.-W., Zhang, M., Luo, H.:Linear last-iterate convergence in constrained saddlepoint optimization. The Ninth International Conference on Learning Representations (2021). https://doi.org/10.48550/arXiv.2006.09517 [43] Cen, S., Wei, Y., Chi, Y.J.:Fast policy extragradient methods for competitive games with entropy regularization (2021), arXiv:2105.15186v1 [44] Azizian, W., Iutzeler, F., Malick, J., Mertikopoulos, P.:The last-iterate convergence rate of optimistic mirror descent in stochastic variational inequalities. The 34th Annual Conference on Learning Theory (2021) [45] Mertikopoulos, P., Sandholm, W.H.:Learning in games via reinforcement and regularization. Math. Oper. Res. 41, 1297-1324(2016) |