[1] Cauchy, A.: Méthode générale pour la résolution des systemes di’équations simultanées. Comp. Rend. Sci. Paris 25, 536-538(1847) [2] Akaike, H.: On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method. Ann. Inst. Stat. Math. 11(1), 1-16(1959) [3] Forsythe, G.E.: On the asymptotic directions of the s-dimensional optimum gradient method. Numer. Math. 11(1), 57-76(1968) [4] Dai, Y.H., Yuan, Y.X.: Alternate minimization gradient method. IMA J. Numer. Anal. 23(3), 377-393(2003) [5] Huang, Y.K., Dai, Y.H., Liu, X.W., et al.: On the asymptotic convergence and acceleration of gradient methods. J. Sci. Comput. 90, 7(2022) [6] Dai, Y.H., Yang, X.: A new gradient method with an optimal stepsize property. Comp. Optim. Appl. 33(1), 73-88(2006) [7] Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31(6), 1645-1661(1994) [8] Dai, Y.H., Yuan, Y.X.: Analysis of monotone gradient methods. J. Ind. Mang. Optim. 1(2), 181(2005) [9] Yuan, Y.X.: A new stepsize for the steepest descent method. J. Comput. Math. 24(2), 149-156(2006) [10] Yuan, Y.X.: Step-sizes for the gradient method. AMS/IP Stud. Adv. Math. 42(2), 785-796(2008) [11] Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141-148(1988) [12] Dai, Y.H.: A new analysis on the Barzilai-Borwein gradient method. J. Oper. Res. Soc. China 2(1), 187-198(2013) [13] Dai, Y.H., Fletcher, R.: On the asymptotic behaviour of some new gradient methods. Math. Program. 103(3), 541-559(2005) [14] Raydan, M.: On the Barzilai-Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13(3), 321-326(1993) [15] Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai-Borwein gradient method. IMA J. Numer. Anal. 22(1), 1-10(2002) [16] Li, D.W., Sun, R.Y.: On a faster R-Linear convergence rate of the Barzilai-Borwein method (2021). arXiv:2101.00205v2 [17] Dai, Y.H., Al-Baali, M., Yang, X.: A positive Barzilai-Borwein-like stepsize and an extension for symmetric linear systems. In: Numerical Analysis and Optimization, pp. 59-75. (2015) [18] Burdakov, O., Dai, Y.H., Huang, N.: Stabilized Barzilai-Borwein method. J. Comput. Math. 37(6), 916-936(2019) [19] Dai, Y.H., Huang, Y.K., Liu, X.W.: A family of spectral gradient methods for optimization. Comput. Optim. Appl. 74(1), 43-65(2019) [20] Di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On the steplength selection in gradient methods for unconstrained optimization. Appl. Math. Comput. 318, 176-195(2018) [21] Fletcher, R.: On the Barzilai-Borwein method. In: Optimization and Control with Applications, pp. 235-256. Springer, New York (2005) [22] Huang, Y.K., Dai, Y.H., Liu, X.W.: Equipping the Barzilai-Borwein method with the two dimensional quadratic termination property. SIAM J. Optim. 31(4), 3068-3096(2021) [23] Raydan, M.: The Barzilai-Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7(1), 26-33(1997) [24] Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196-1211(2000) [25] Crisci, S., Porta, F., Ruggiero, V., Zanni, L.: Spectral properties of Barzilai-Borwein rules in solving singly linearly constrained optimization problems subject to lower and upper bounds. SIAM J. Optim. 30(2), 1300-1326(2020) [26] Dai, Y.H., Fletcher, R.: Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming. Numer. Math. 100(1), 21-47(2005) [27] Huang, Y.K., Liu, H.: Smoothing projected Barzilai-Borwein method for constrained non-lipschitz optimization. Comp. Optim. Appl. 65(3), 671-698(2016) [28] Huang,Y.K.,Dai,Y.H., Liu,X.W., Zhang,H.:Gradientmethods exploiting spectral properties.Optimi. Method Softw. 35(4), 681-705(2020) [29] Huang, Y.K., Liu, H., Zhou, S.: Quadratic regularization projected Barzilai-Borwein method for nonnegative matrix factorization. Data Min. Knowl. Disc. 29(6), 1665-1684(2015) [30] Jiang, B., Dai, Y.H.: Feasible Barzilai-Borwein-like methods for extreme symmetric eigenvalue problems. Optim. Method Softw. 28(4), 756-784(2013) [31] Tan, C., Ma, S., Dai, Y.H., Qian, Y.: Barzilai-Borwein step size for stochastic gradient descent. In: Advances in Neural Information Processing Systems, pp. 685-693(2016) [32] Wang, Y., Ma, S.: Projected Barzilai-Borwein method for large-scale nonnegative image restoration. Inverse Probl. Sci. En. 15(6), 559-583(2007) [33] De Asmundis, R., Di Serafino, D., Hager, W.W., Toraldo, G., Zhang, H.: An efficient gradient method using the Yuan steplength. Comput. Optim. Appl. 59(3), 541-563(2014) [34] Frassoldati, G., Zanni, L., Zanghirati, G.: New adaptive stepsize selections in gradient methods. J. Ind. Mang. Optim. 4(2), 299-312(2008) [35] Sun, C., Liu, J.P.: New stepsizes for the gradient method. Optim. Lett. 14(7), 1943-1955(2020) [36] Zhou, B., Gao, L., Dai, Y.H.: Gradient methods with adaptive step-sizes. Comput. Optim. Appl. 35(1), 69-86(2006) [37] Dai, Y.H.: Alternate step gradient method. Optimization 52(4-5), 395-415(2003) [38] Huang, N.: On R-linear convergence analysis for a class of gradient methods. Comput. Optim. Appl. 81(1), 161-177(2022) [39] Friedlander, A., Martínez, J.M., Molina, B., Raydan, M.: Gradient method with retards and generalizations. SIAM J. Numer. Anal. 36(1), 275-289(1998) [40] Huang, Y.K., Dai, Y.H., Liu, X.W., Zhang, H.: On the acceleration of the Barzilai-Borwein method. Comput. Optim. Appl. 81(3), 717-740(2022) [41] Zou, Q., Magoulès, F.: Fast gradient methods with alignment for symmetric linear systems without using Cauchy step. J. Comput. Math. 381, 113033(2021) [42] Dai, Y.H., Hager, W.W., Schittkowski, K., Zhang, H.: The cyclic Barzilai-Borwein method for unconstrained optimization. IMA J. Numer. Anal. 26(3), 604-627(2006) |