[1] Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs, III. Small off-diagonal numbers. Pac. J. Math. 41, 335-345(1972) [2] Cockayne, E., Lorimer, P.: On Ramsey graph number for star and stripes. Can. Math. Bull. 18, 31-34(1972) [3] Zhang, Y., Broersma, H., Chen, Y.: Ramsey numbers of trees versus fans. Discrete Math. 338, 994-999(2015) [4] Burr, S., Erdős, P., Spencer, J.: Ramsey theorems for multiple copies of graphs. Trans. Am. Math. Soc. 209, 87-99(1975) [5] Burr, S.: On the Ramsey numbers r(G, nH) and r(nG, nH) when n is large. Discrete Math. 65, 215-229(1987) [6] Burr, S.: Ramsey numbers involving graphs with long suspended paths. J. Lond. Math. Soc. 24, 405-413(1981) [7] Burr, S., Erdős, P.: Generalizations of a Ramsey-theoretic result of Chvátal. J. Graph Theory 7, 39-51(1983) [8] Allen, P., Brightwell, G., Skokan, J.: Ramsey-goodness—and otherwise. Combinatorica 33, 125-160(2013) [9] Balla, I., Pokrovskiy, A., Sudakov, B.: Ramsey goodness of bounded degree trees. Combin. Prob. Comput. 27, 289-309(2018) [10] Li, Y., Rousseau, C.: Fan-complete graph Ramsey numbers. J. Graph Theory 23, 413-420(1996) [11] Lin, Q., Li, Y., Dong, L.: Ramsey goodness and generalized stars. Eur. J. Combin. 31(5), 1228-1234(2010) [12] Lin, Q., Peng, X.: Large book-cycle Ramsey numbers. SIAM J. Discrete Math. 35, 532-545(2021) [13] Nikiforov, V., Rousseau, C.: Large generalized books are p-good. J. Combin. Theory Ser. B 92, 85-97(2004) [14] Nikiforov, V., Rousseau, C.: Ramsey goodness and beyond. Combinatorica 29, 227-262(2009) [15] Pokrovskiy, A., Sudakov, B.: Ramsey goodness of paths. J. Combin. Theory Ser. B 122, 384-390(2017) [16] Chvátal, V.: Tree-complete graph Ramsey numbers. J. Graph Theory 1, 93(1977) [17] Hu, S., Peng, Y.: The Ramsey number for a forest versus disjoint union of complete graphs. Graphs Combin. 39, 26(2023) |