[1] Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press (2009) [2] Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15, 1455-1459(2014) [3] Hu, J., Liu, X., Wen, Z.W., Yuan, Y.X.: A brief introduction to manifold optimization. J. Oper. Res. Soc. China 8(2), 199-248(2020) [4] Smith, S.T.: Optimization techniques on Riemannian manifolds. Fields Inst. Commun. 3(1994) [5] Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359-390(2002) [6] Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7(3), 303-330(2007) [7] Kovnatsky, A., Glashoff, K., Bronstein, M.M.: Madmm: a generic algorithm for non-smooth optimization on manifolds. In: European Conference on Computer Vision, pp. 680-696. Springer (2016) [8] Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303-353(1998) [9] Gao, B., Liu, X., Chen, X., Yuan, Y.X.: A new first-order algorithmic framework for optimization problems with orthogonality constraints. SIAM J. Optim. 28(1), 302-332(2018) [10] Journée, M., Nesterov, Y., Richtárik, P., Sepulchre, R.: Generalized power method for sparse principal component analysis. J. Mach. Learn. Res. 11(2), 517-553(2010) [11] Sato, H., Iwai, T.: A Riemannian optimization approach to the matrix singular value decomposition. SIAM J. Optim. 23(1), 188-212(2013) [12] Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142(1-2), 397-434(2013) [13] Li, Z., Uschmajew, A., Zhang, S.: On convergence of the maximum block improvement method. SIAM J. Optim. 25(1), 210-233(2015) [14] Shen, X., Diamond, S., Udell, M., Gu, Y., Boyd, S.: Disciplined multi-convex programming. In: 201729th Chinese Control And Decision Conference (CCDC), pp. 895-900. IEEE (2017) [15] Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imag. Sci. 6(3), 1758-1789(2013) [16] Comon, P., Golub, G., Lim, L.H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30(3), 1254-1279(2008) [17] Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM (2017) [18] Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455-500(2009) [19] Cichocki, A., Mandic, D., Lathauwer, L.D., Zhou, G., Zhao, Q., Caiafa, C., Phan, H.A.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32(2), 145-163(2015) [20] Comon, P.: Tensors: a brief introduction. IEEE Signal Process. Mag. 31(3), 44-53(2014) [21] Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Faloutsos, C.: Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 65(13), 3551-3582(2017) [22] Chen, J., Saad, Y.: On the tensor SVD and the optimal low rank orthogonal approximation of tensors. SIAM J. Matrix Anal. Appl. 30(4), 1709-1734(2009) [23] Kolda, T.G.: Orthogonal tensor decompositions. SIAM J. Matrix Anal. Appl. 23(1), 243-255(2001) [24] De Lathauwer, L.: Signal Processing Based on Multilinear Algebra. Katholieke Universiteit Leuven (1997) [25] De Lathauwer, L., Comon, P., De Moor, B., Vandewalle, J.: Higher-order power method—application in independent component analysis. In: Proc. of the International Symposium on Nonlinear Theory and its Applications (NOLTA’95), pp. 91-96(1995) [26] De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(r1, r2, ..., rn) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324-1342(2000) [27] Pan, J., Ng, M.K.: Symmetric orthogonal approximation to symmetric tensors with applications to image reconstruction. Numer. Linear Algebra Appl. 25(5), e2180(2018) [28] Li, J., Usevich, K., Comon, P.: Jacobi-type algorithm for low rank orthogonal approximation of symmetric tensors and its convergence analysis. Pac. J. Optim. 17(3), 357-379(2021) [29] Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863-884(2002) [30] Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation. Academic Press, Oxford (2010) [31] Hu, G., Hua, Y., Yuan, Y., Zhang, Z., Lu, Z., Mukherjee, S.S., Hospedales, T.M., Robertson, N.M., Yang, Y.: Attribute-enhanced face recognition with neural tensor fusion networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3744-3753(2017) [32] Karami, A., Yazdi, M., Mercier, G.: Compression of hyperspectral images using discerete wavelet transform and tucker decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(2), 444-450(2012) [33] Li, J., Zhang, X.P., Tran, T.: Point cloud denoising based on tensor tucker decomposition. In: 201926th IEEE International Conference on Image Processing (ICIP). IEEE (2019) [34] Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118(2), 301-316(2009) [35] Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. J. Mach. Learn. Res. 15, 2773-2832(2014) [36] Comon, P.: Tensor diagonalization, a useful tool in signal processing. IFAC Proc. Vol. 27(8), 77-82(1994) [37] Li, J., Usevich, K., Comon, P.: Globally convergent Jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization. SIAM J. Matrix Anal. Appl. 39(1), 1-22(2018) [38] Li, J., Usevich, K., Comon, P.: On approximate diagonalization of third order symmetric tensors by orthogonal transformations. Linear Algebra Appl. 576, 324-351(2019) [39] Li, J., Usevich, K., Comon, P.: On the convergence of Jacobi-type algorithms for independent component analysis. In: 11th IEEE Sensor Array and Multichannel Signal Processing Workshop. IEEE (2020) [40] Usevich, K., Li, J., Comon, P.: Approximate matrix and tensor diagonalization by unitary transformations: convergence of Jacobi-type algorithms. SIAM J. Optim. 30(4), 2998-3028(2020) [41] Comon, P.: Independent component analysis. In: Lacoume, J.L. (ed.) Higher Order Statistics, pp. 29-38. Elsevier, Amsterdam, London (1992) [42] Comon, P.: Independent component analysis, a new concept? Signal Process. 36(3), 287-314(1994) [43] Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific (1999) [44] Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475-494(2001) [45] Wright, S.J.: Accelerated block-coordinate relaxation for regularized optimization. SIAM J. Optim. 22(1), 159-186(2012) [46] Chen, B., He, S., Li, Z., Zhang, S.: Maximum block improvement and polynomial optimization. SIAM J. Optim. 22(1), 87-107(2012) [47] Xu, Y.: On the convergence of higher-order orthogonal iteration. Linear Multilinear Algebra 66(11), 2247-2265(2018) [48] Abrudan, T.E., Eriksson, J., Koivunen, V.: Steepest descent algorithms for optimization under unitary matrix constraint. IEEE Trans. Signal Process. 56(3), 1134-1147(2008) [49] Brandwood, D.: A complex gradient operator and its application in adaptive array theory. IEE Proc. H-Microw., Opt. Antennas 130(1), 11-16(1983) [50] Krantz, S.G.: Function Theory of Several Complex Variables, vol. 340. American Mathematical Society (2001) [51] Manton, J.H.: Modified steepest descent and Newton algorithms for orthogonally constrained optimisation. Part i. The complex Stiefel manifold. In: Proceedings of the 6th International Symposium on Signal Processing and its Applications, vol. 1, pp. 80-83. IEEE (2001) [52] Absil, P.A., Mahony, R., Trumpf, J.: An extrinsic look at the Riemannian Hessian. In: International Conference on Geometric Science of Information, pp. 361-368. Springer (2013) [53] Van Den Bos, A.: Complex gradient and Hessian. IEE Proc.-Vis., Image Signal Process. 141(6), 380-382(1994) [54] Łojasiewicz, S.: Ensembles Semi-analytiques. IHES Notes (1965) [55] Łojasiewicz, S.: Sur la géométrie semi- et sous-analytique. Ann. l’inst. Four. 43(5), 1575-1595(1993) [56] Absil, P.A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16(2), 531-547(2005) [57] Uschmajew, A.: A new convergence proof for the higher-order power method and generalizations. Pac. J. Optim. 11(2), 309-321(2015) [58] Schneider, R., Uschmajew, A.: Convergence results for projected line-search methods on varieties of low-rank matrices via łojasiewicz inequality. SIAM J. Optim. 25(1), 622-646(2015) [59] Krantz, S., Parks, H.: A Primer of Real Analytic Functions. Birkhäuser, Boston (2002) [60] Polyak, B.T.: Gradient methods for minimizing functionals. Zh. Vychisl. Mat. Mat. Fiz. 3(4), 643-653(1963) [61] Bott, R.: Nondegenerate critical manifolds. Ann. Math. 60, 248-261(1954) [62] Feehan, P.: Optimal Łojasiewicz-Simon inequalities and Morse-Bott Yang-Mills energy functions. (2018) arXiv:1706.09349 [63] Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press (2013) [64] Higham, N.J.: Functions of Matrices: Theory and Computation, vol. 104. SIAM (2008) [65] Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (2012) [66] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004) [67] Nie, J., Yang, Z.: Hermitian tensor decompositions (2019). arXiv:1912.07175 [68] Jiang, B., Li, Z., Zhang, S.: Characterizing real-valued multivariate complex polynomials and their symmetric tensor representations. SIAM J. Matrix Anal. Appl. 37(1), 381-408(2016) [69] Hu, S., Ye, K.: Linear convergence of an alternating polar decomposition method for low rank orthogonal tensor approximations (2019). arXiv:1912.04085 [70] Yang, Y.: The epsilon-alternating least squares for orthogonal low-rank tensor approximation and its global convergence. SIAM J. Matrix Anal. Appl. 41(4), 1797-1825(2020) [71] Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23(2), 534-550(2001) [72] Hu, S., Li, G.: Convergence rate analysis for the higher order power method in best rank one approximations of tensors. Numer. Math. 140(4), 993-1031(2018) [73] Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095-1124(2011) [74] Zhang, X., Ling, C., Qi, L.: The best rank-1 approximation of a symmetric tensor and related spherical optimization problems. SIAM J. Matrix Anal. Appl. 33(3), 806-821(2012) [75] Ishteva, M.: Numerical methods for the best low multilinear rank approximation of higher-order tensors. Ph.D Thesis, Department of Electrical Engineering, Katholieke Universiteit Leuven (2009) [76] Ishteva, M., Absil, P.A., Van Dooren, P.: Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors. SIAM J. Matrix Anal. Appl. 2(34), 651-672(2013) [77] Ishteva, M., Absil, P.A., Van Huffel, S., De Lathauwer, L.: Best low multilinear rank approximation of higher-order tensors, based on the Riemannian trust-region scheme. SIAM J. Matrix Anal. Appl. 32(1), 115-135(2011) [78] Kruskal, J.B.: Rank, decomposition, and uniqueness for 3-way and n-way arrays. Multiway Data Anal. 7-18(1989) [79] Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279-311(1966) [80] Bader, B.W., Kolda, T.G., et al.: Tensor Toolbox for MATLAB, Version 3.5, Available online (2023) [81] Guan, Y., Chu, D.: Numerical computation for orthogonal low-rank approximation of tensors. SIAM J. Matrix Anal. Appl. 40(3), 1047-1065(2019) [82] Wang, L., Chu, M.T.: On the global convergence of the alternating least squares method for rank-one approximation to generic tensors. SIAM J. Matrix Anal. Appl. 35(3), 1058-1072(2014) [83] Wang, L., Chu, M.T., Yu, B.: Orthogonal low rank tensor approximation: alternating least squares method and its global convergence. SIAM J. Matrix Anal. Appl. 36(1), 1-19(2015) |