[1] Fujishige, S.: Submodular Functions and Optimization. Elsevier Science, Amsterdan (2005) [2] Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265-294(1978) [3] Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions-II. Math. Prog. Study 8, 73-87(1978) [4] Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740-1766(2011) [5] Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (extended abstract). In: Proc. the 12th conference on integer programming and combinatorial optimization, 4513:182-196(2007) [6] Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proc. the 40th ACM Symp. on theory of computing, pp.67-74(2008) [7] Filmus, Y., Ward, J.: Monotone submodular maximization over a matroid via non-oblivious local search. SIAM J. Comput. 43(2), 514-542(2013) [8] Das, A., Kempe, D.: Submodularmeets spectral: greedy algorithmsfor subset selection, sparse approximation and dictionary selection. In: Proc. the 28th international conference on machine learning, pp.1057-1064(2011) [9] Elenberg, E.R., Khanna, R., Dimakis, A.G., Negahban, S.: Restricted strong convexity implies weak submodularity. Ann. Stat. 46(6B), 3539-3568(2016) [10] Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: Proc. the 34th international conference on machine learning, pp.498-507(2017) [11] Gatmiry, K., Rodriguez, M.G.: Non-submodular function maximization subject to a matroid constraint, with applications. arXiv preprint arXiv:1811.07863v4(2018) [12] Chen, L., Feldman, M., Karbasi, A.:Weakly submodularmaximization beyond cardinality constraints: does randomization help greedy?. In: Proc. the 35th international conference on machine learning, pp.804-813(2018) [13] Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximization with matroid constraints. J. Global Optim. 75(3), 833-849(2019) [14] Nong, Q., Sun, T., Gong, S., Fang, Q., Du, D., Shao, X.: Maximize a monotone function with a generic submodularity ratio. Theory Comput. Sci. 853, 16-24(2021) [15] Wang, Y.J., Du, D.L., Jiang, Y.J., Zhang, X.Z.: Non-submodular maximization with matroid and knapsack constraints. Asia-Pacific J. Oper. Res. 38(05), 2140001(2021) [16] Wang, Y.J., Xu, D.C., Wang, Y.S., Zhang, D.M.: Non-submodular maximization on massive data streams. J. Global Optim. 76, 729-743(2020) [17] Feldman, M., Izsak, R.: Constrained monotone function maximization and the supermodular degree. arXiv preprint arXiv:1407.6328(2014) [18] Conforti, M., Cornuéjols, G.: Submodular functions, matroids and the greedy algorithm: tight worstcase bounds and some generalizations of the Rado-Edmonds theorem. Discret. Appl. Math. 7(3), 251-274(1984) [19] Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235-284(2008) [20] Qian, C., Yu, Y., Tang, K.: Approximation guarantees of stochastic greedy algorithms for subset selection. In: Proc. the 27th international joint conference on artificial intelligence (2018) [21] Du, D.Z., Ko, K.I., Hu, X.D.: Design and Analysis of Approximation Algorithms. Springer, New York (2012) [22] Vondrák, J.: Submodularity and curvature: the optimal algorithm. RIMS Kokyuroku Bessatsu B23, 253-266(2009) [23] Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. In: Proc. the 26th ACM-SIAM Symp. on discrete algorithms, pp.1134-1148(2015) |