[1] Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, San Diego (1992) [2] Murty, K.G.: Linear Complementarity. Linear and Nonlinear Programming. Heldermann, Berlin (1988) [3] Cottle, R.W., Dantzig, G.B.: A generalization of the linear complementarity problem. J. Combin. Theory 8, 79-90(1970) [4] Zhang, C., Chen, X.-J., Xiu, N.-H.: Global error bounds for the extended vertical LCP. Comput. Optim. Appl. 42, 335-352(2009) [5] Mathias, R., Pang, J.-S.: Error bounds for the linear complementarity problem with a P-matrix. Linear Algebra Appl. 132, 123-136(1990) [6] Chen, X.-J., Xiang, S.-H.: Perturbation bounds of P-matrix linear complementarity problems. SIAM J. Optim. 18, 1250-1265(2007) [7] Ebiefung, A.A., Kostreva, M.M.: The generalized Leontief input-output model and its application to the choice of the new technology. Ann. Oper. Res. 44, 161-172(1993) [8] Fujisawa, T., Kuh, E.S.: Piecewise-linear theory of nonlinear networks. SIAM J. Appl. Math. 22, 307-328(1972) [9] Goeleven, D.: A uniqueness theorem for the generalized-order linear complementary problem associated with M-matrices. Linear Algebra Appl. 235, 221-227(1996) [10] Gowda, M.S.: On the extended linear complementarity problem. Math. Program. 72, 33-50(1996) [11] Gowda, M.S., Sznajder, R.: A generalization of the Nash equilibrium theorem on bimatrix games. Int. J. Game Theory 25, 1-12(1996) [12] Gowda, M.S., Sznajder, R.: The generalized order linear complementarity problem. SIAM J. Matrix Anal. Appl. 15, 779-795(1994) [13] Habetler, G.J., Haddad, G.N.: Global stability of a two-species piecewise linear Volterra ecosystem. Appl. Math. Lett. 5, 25-28(1992) [14] Mezzadri, F., Galligani, E.: Projected splitting methods for vertical linear complementarity problems. J. Optim. Theory Appl. 193, 598-620(2022) [15] Oh, K.P.: The formulation of the mixed lubrication problem as a generalized nonlinear complementarity problem. J. Tribol. 108, 598-604(1986) [16] Qi, H.-D., Liao, L.-Z.: A smoothing Newton method for extended vertical linear complementarity problems. SIAM J. Matrix Anal. Appl. 21(1), 45-66(1999) [17] Sun, M.: Monotonicity of Mangasarian’s iterative algorithm for generalized linear complementarity problems. J. Math. Anal. Appl. 144, 474-485(1989) [18] Zabaljauregui, D.: A fixed-point policy-iteration-type algorithm for symmetric nonzero-sum stochastic impulse control games. Appl. Math. Optim. 84, 1751-1790(2021) [19] Zhou, S.-Z., Zou, Z.-Y.: A new iterative method for discrete HJB equations. Numer. Math. 111, 159-167(2008) [20] Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic, New York (1979) [21] Clarke, F.H.: Optimization and Nonsmooth Analysis. Classics in Applied Mathematics, vol. 5, 2nd edn. SIAM, Philadephia (1990) [22] Sznajder, R., Gowda, M.S.: Generalizations of P0- and P-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 223-224, 695-715(1995) [23] Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2013) [24] Li, W.: A general modulus-based matrix splitting method for linear complementarity problems of H-matrices. Appl. Math. Lett. 26, 1159-1164(2013) [25] Ebiefung, A.A.: Nonlinear mappings associated with the generalized linear complementarity problem. Math. Program. 69, 255-268(1995) [26] Bensoussan, A., Lions, J.L.: Applications of Variational Inequalities in Stochastic Control. NorthHolland, Amsterdam (1982) |