[1] Hotelling, H.: Relations between two sets of variates. Biometrika 28(3/4), 321-377(1936) [2] Witten, D.M., Tibshirani, R.J.: Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol. Biol. 8(1), 1-27(2009) [3] Parkhomenko, E.: Sparse canonical correlation analysis. Stat. Appl. Genet. Mol. Biol. 8(1), 1(2008) [4] Lin, D., Calhoun, V.D., Wang, Y.: Correspondence between fMRI and SNP data by group sparse canonical correlation analysis. Med. Image Anal. 18(6), 891-902(2014) [5] Correa, N.M., Li, Y.O., Adali, T., Calhoun, V.D.: Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia. IEEE J. Select. Top. Signal Process. 2(6), 998-1007(2008) [6] Fu, Y., Huang, T.S.: Image classification using correlation tensor analysis. IEEE Trans. Image Process. 17(2), 226-234(2008) [7] Loog, M., Van Ginneken, B., Duin, R.P.: Dimensionality reduction by canonical contextual correlation projections. In: European Conference on Computer Vision, pp. 562-573. Springer, Berlin (2004) [8] Vinod, H.D.: Canonical ridge and econometrics of joint production. J. Econom. 4(2), 147-166(1976) [9] Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42(1), 80-86(2000) [10] Parkhomenko, E., Tritchler, D., Beyene, J.: Sparse canonical correlation analysis with application to genomic data integration. Stat. Appl. Genet. Mol. Biol. 8(1), 1-34(2009) [11] Witten, D.M., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10(3), 515-534(2009) [12] Waaijenborg, S., de Witt Hamer, P.C.V., Zwinderman, A.H.: Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis. Stat. Appl. Genet. Mol. Biol. 7(1) (2008). PMID: 18241193. https://doi.org/10.2202/1544-6115.1329 [13] Lin, D., Zhang, J., Li, J., Calhoun, V.D., Deng, H., Wang, Y.: Group sparse canonical correlation analysis for genomic data integration. BMC Bioinf. 14(1), 245(2013) [14] Chen, X., Liu, H., Carbonell, J.G.: Structured sparse canonical correlation analysis. Appl. Intell. 40(2), 291-304(2012) [15] Wilms, I., Croux, C.: Sparse canonical correlation analysis from a predictive point of view. Biom. J. 57(5), 834-851(2015) [16] Suo, X., Minden, V., Nelson, B., Tibshirani, R., Saunders, M.: Sparse canonical correlation analysis. arXiv:1705.10865(2017) [17] Gao, C., Ma, Z., Zhou, H.H.: Sparse CCA: adaptive estimation and computational barriers. Ann. Stat. 45(5), 2074-2101(2017) [18] Mai, Q., Zhang, X.: An iterative penalized least squares approach to sparse canonical correlation analysis. Biometrics 75(3), 734-744(2019) [19] Grave, E., Obozinski, G., Bach, F.: Trace Lasso: a trace norm regularization for correlated designs. Adv. Neural Inf. Process. Syst. pp. 2187-2195(2012). https://doi.org/10.48550/arXiv.1109.1990 [20] Wang, Y., Lin, X.,Wu, L., Zhang,W., Zhang, Q., Huang, X.: Robust subspace clustering formulti-view data by exploiting correlation consensus. IEEE Trans. Image Process. 24(11), 3939-3949(2015) [21] Wang, J., Lu, C., Wang, M., Li, P., Yan, S., Hu, X.: Robust face recognition via adaptive sparse representation. IEEE Trans. Cybern. 44(12), 2368-2378(2014) [22] Lu, C., Feng, J., Lin, Z., Yan, S.: Correlation adaptive subspace segmentation by trace Lasso. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1345-1352(2013) [23] Hu, J., Liu, X., Wen, Z., Yuan, Y.: A brief introduction to manifold optimization. J. Oper. Res. Soc. China 8(2), 199-248(2020) [24] Deng, K., Peng, Z.: A manifold inexact augmented Lagrangian method for nonsmooth optimization on Riemannian submanifolds in Euclidean space. IMA J. Numer. Anal. (2022). https://doi.org/10.1093/imanum/drac018 [25] Zhang, J., Ma, S., Zhang, S.: Primal-dual optimization algorithms over Riemannian manifolds: an iteration complexity analysis. Math. Program. 184(1), 445-490(2020) [26] Yang, W., Zhang, L., Song, R.: Optimality conditions for the nonlinear programming problems on Riemannian manifolds. Pac. J. Optim. 10(2), 415-434(2014) [27] Iannazzo, B., Porcelli, M.: The Riemannian Barzilai-Borwein method with nonmonotone line search and the matrix geometric mean computation. IMA J. Numer. Anal. 38(1), 495-517(2015) [28] Chin, K., DeVries, S., Fridlyand, J., Spellman, P.T., Roydasgupta, R., Kuo, W., Lapuk, A., Neve, R.M., Qian, Z., Ryder, T., et al.: Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6), 529-541(2006) [29] Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009) [30] Beck, A.: First-order Methods in Optimization vol. 25. SIAM (2017) [31] Boumal, N., Absil, P.A., Cartis, C.: Global rates of convergence for nonconvex optimization on manifolds. IMA J. Numer. Anal. 39(1), 1-33(2018) |