[1] Pareto, V.:Manual D'economie Politique. F. Rouge, Lausanne (1896) [2] Fukuda, E.H., Graña Drummond, L.M.:On the convergence of the projected gradient method for vector optimization. Optimization 60, 1009-1021(2011) [3] Fukuda, E.H., Graña Drummond, L.M.:Inexact projected gradient method for vector optimization. Comput. Optim. Appl. 54, 473-493(2013) [4] Fukuda, E.H., Graña Drummond, L.M.:A survey on multiobjective descent methods. Pesq. Oper. 34, 585-620(2014) [5] Graña Drummond, L.M., Iusem, A.N.:A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28, 5-29(2004) [6] Fazzio, N.S., Schuverdt, M.L.:Convergence analysis of a nonmonotone projected gradient method for multiobjective optimization problems. Optim. Lett. 13, 1365-1379(2019) [7] Grippo, L., Lampariello, F., Lucidi, S.:A nonmonotone line search technique for Newton's method. SIAM J. Numer. Anal. 23, 707-716(1986) [8] Mita, K., Fukuda, E.H., Yamashita, N.:Nonmonotone line searches for unconstrained multiobjective optimization problems. J. Glob. Optim. 75, 63-90(2019) [9] Qu, S., Ji, Y., Jiang, J., Zhang, Q.:Nonmonotone gradient methods for vector optimization with a portfolio optimization application. Eur. J. Oper. Res. 263, 356-366(2017) [10] Zhang, H., Hager, W.W.:A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Opt. 14, 1043-1056(2004) [11] Birgin, E.G., Martínez, J.M., Raydan, M.:Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196-1211(1999) [12] Birgin, E.G., Martínez, J.M., Raydan, M.:Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal. 23, 539-559(2003) [13] Luc, D.T.:Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer (1989) [14] Fliege, J., Graña Drummond, L.M., Svaiter, B.F.:Newton's method for multiobjective optimization. SIAM J. Optim. 20, 602-626(2009) [15] Das, I., Dennis, J.E.:Normal-boundary intersection:a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631-657(1998) [16] Jin, Y., Olhofer, M., Sendhoff, B.:Dynamic weighted aggregation for evolutionary multi-objective optimization:why does it work and how?In:GECCO'01 Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 1042-1049(2001) [17] Kim, I.Y., de Weck, O.L.:Adaptive weighted-sum method for bi-objective optimization:Pareto front generation. Struct. Multidiscipl. Optim. 29149-158(2006) [18] Moré, J.J., Garbow, B.S., Hillstrom, K.E.:Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17-41(1981) [19] Stadler, W., Dauer, J.:Multicriteria optimization in engineering:a tutorial and survey. In:Kamat, M.P.(ed.). Progress in Aeronautics and Astronautics:Structural Optimization:Status and Promise, vol. 150, pp. 209-249. American Institute of Aeronautics and Astronautics (1992) [20] Toint, P.L.:Test problems for partially separable optimization and results for the routine PSPMIN. Tech. Rep. 83/4, Department of Mathematics, University of Namur, Brussels, Belgium (1983) [21] Zitzler, E., Deb, K., Thiele, L.:Comparison of multiobjective evolutionary algorithms:empirical results. Evolut. Comput. 8, 173-195(2000) [22] Kraft, D.:A software package for sequential quadratic programming. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace Center, Institute for Flight Mechanics, Koln, Germany (1988) [23] Jones, E., Oliphant, T., Peterson, P., et al.:SciPy:Open source scientific tools for Python (2001). http://www.scipy.org/ [24] Dolan, E.D., Moré, J.J.:Benchmarking optimization software with performance profiles. Math. Program. 91, 201-213(2002) [25] Custódio, A.L., Madeira, J.F A., Vaz, A.I F., Vicente, L.N.:Direct multisearch for multiobjective optimization. SIAM J. Optim. 21(3), 1109-1140(2011) [26] Morovati, V., Pourkarimi, L.:Basirzadeh:Barzilai and Borwein's method for multiobjective optimization problems. Numer. Algorithm 72, 539-604(2016) |