[1] Chen, X., Liang, Y., Sterna, M., Wang, W., Bła· zewicz, J.:Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date. Eur. J. Oper. Res. 284(1), 67-74(2020) [2] Sterna, M., Czerniachowska, K.:Polynomial time approximation scheme for two parallel machines scheduling with a common due date to maximize early work. J. Optimiz. Theory. App. 174, 927-944(2017) [3] Sterna, M.:A survey of scheduling problems with late work criteria. Omega 39(2), 120-129(2011) [4] Chen, X., Wang, W., Xie, P., Zhang, X., Sterna, M., Bła· zewicz, J.:Exact and heuristic algorithms for scheduling on two identical machines with early work maximization. Comput. Ind. Eng. 144, 106449(2020) [5] Györgyi, P., Kis, T.:A common approximation framework for early work, late work, and resource leveling problems. Eur. J. Oper. Res. 286(1), 129-137(2020) [6] Chen, X., Sterna, M., Han, X., Bła· zewicz, J.:Scheduling on parallel identical machines with late work criterion:offline and online cases. J. Sched. 19, 729-736(2016) [7] Chen, X., Kovalev, S., Liu, Y., Sterna, M., Chalamon, I., Bła· zewicz, J.:Semi-online scheduling on two identical machines with a common due date to maximize total early work. Discrete. Appl. Math.(2020). https://doi.org/10.1016/j.dam.2020.05.023 [8] Lenstra, H.W., Jr.:Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538-548(1983) |