[1] Liu, G., Zhang, L.:Characterizations of maximum fractional (g, f)-factors of graphs.Discret.Appl.Math.156, 2293-2299(2008) [2] Chvátal, V.:Tough graphs and Hamiltonian circuits.Discret.Math.5, 215-228(1973) [3] Li, Z., Yan, G., Zhang, X.:On fractional (g, f)-covered graphs.OR Trans.6(4), 65-68(2002) [4] Zhou, S., Xu, Y., Sun, Z.:Degree conditions for fractional (a, b, k)-critical covered graphs.Inf.Process.Lett.152.https://doi.org/10.1016/j.ipl.2019.105838(2019) [5] Egawa, Y., Kano, M.:Sufficient conditions for graphs to have (g, f)-factors.Discret.Math.151, 87-90(1996) [6] Iida, T., Nishimura, T.:Neighborhood conditions and k-factors.Tokyo J.Math.20(2), 411-418(1997) [7] Katerinis, P.:Toughness of graphs and the existence of factors.Discret.Math.80, 81-92(1990) [8] Kimura, K.:f -factors, complete-factors, and component-deleted subgraphs.Discret.Math.313, 1452-1463(2013) [9] Matsuda, H.:Ore-type conditions for the existence of even[2, b]-factors in graphs.Discret.Math.304, 51-61(2005) [10] Sun, Z., Zhou, S.:A generalization of orthogonal factorizations in digraphs.Inf.Process.Lett.132, 49-54(2018) [11] Zhou, S.:Remarks on path factors in graphs.RAIRO-Oper.Res.54(6), 1827-1834(2020) [12] Zhou, S.:Some results about component factors in graphs.RAIRO-Oper.Res.53(3), 723-730(2019) [13] Zhou, S.:Some results on path-factor critical avoidable graphs.Discus.Math.Graph Theory.https://doi.org/10.7151/dmgt.2364(2020) [14] Zhou, S., Sun, Z.:Binding number conditions for P 2-factor and P 3-factor uniform graphs.Discret.Math.343(3).https://doi.org/10.1016/j.disc.2019.111715(2020) [15] Zhou, S., Sun, Z.:Some existence theorems on path factors with given properties in graphs.Acta Math.Sinica Eng.Ser.36(8), 917-928(2020) [16] Zhou, S., Zhang, T., Xu, Z.:Subgraphs with orthogonal factorizations in graphs.Discret.Appl.Math.286, 29-34(2020) [17] Katerinis, P.:Fractional l-factors in regular graphs.Australasian J.Comb.73(3), 432-439(2019) [18] Lu, H., Yu, Q.:General fractional f -factor numbers of graphs.Appl.Math.Lett.24, 519-523(2011) [19] Lv, X.:A degree condition for fractional(g, f, n)-critical covered graphs.AIMS Math.5(2), 872-878(2020) [20] Wang,S.,Zhang,W.:Researchonfractionalcriticalcoveredgraphs.Prob.Inf.Transm.56(3),270-277(2020) [21] Yuan, Y., Hao, R.:A neighborhood union condition for fractional ID-[a, b]-factor-critical graphs.Acta Math.Appl.Sinica Eng.Serie 34(4), 775-781(2018) [22] Yuan, Y., Hao, R.:Independence number, connectivity and all fractional (a, b, k)-critical graphs.Discus.Math.Graph Theory 39, 183-190(2019) [23] Zhou, S.:Binding numbers and restricted fractional (g, f)-factors in graphs.Discret.Appl.Math.https://doi.org/10.1016/j.dam.2020.10.017(2020) [24] Zhou,S.,Sun,Z.,Pan,Q.:Asufficientconditionfortheexistenceofrestrictedfractional(g, f)-factors in graphs.Prob.Inf.Transm.56(4), 332-344(2020) [25] Enomoto, H., Hagita, M.:Toughness and the existence of k-factors.IV Discret.Math.216, 111-120(2000) [26] Enomoto, H., Jackson, B., Katerinis, P., Saito, A.:Toughness and the existence of k-factors.J.Graph Theory 9, 87-95(1985) [27] Zhou,S.,Yang,F.,Xu,L.:Twosufficientconditionsfortheexistenceofpathfactorsingraphs.Scientia Iranica 26(6), 3510-3514(2019) [28] Liu, G., Zhang, L.:Toughness and the existence of fractional k-factors of graphs.Discret.Math.308, 1741-1748(2008) [29] Zhou, S., Sun, Z., Ye, H.:A toughness condition for fractional (k, m)-deleted graphs.Inf.Process.Lett.113(8), 255-259(2013) [30] Yuan, Y., Hao, R.:Toughness condition for the existence of all fractional (a, b, k)-critical graphs.Discret.Math.342, 2308-2314(2019) [31] Gao, W., Wang, W., Dimitrov, D.:Toughness condition for a graph to be all fractional(g, f, n)-critical deleted.Filomat 33(9), 2735-2746(2019) [32] Yuan, Y., Hao, R.:Neighborhood union conditions for fractional[a, b]-covered graphs.Bull.Malaysian Math.Sci.Soc.https://doi.org/10.1007/s40840-018-0669-y (2020) [33] Yuan, Y., Hao, R.:A degree condition for fractional[a, b]-covered graphs.Inf.Process.Lett.143, 20-23(2019) [34] Zhou,S.,Liu,H.,Xu,Y.:Bindingnumbersforfractional(a, b, k)-criticalcoveredgraphs.In:Proceedings of the Romanian Academy, Series A:Mathematics, Physics, Technical Sciences, Information.Science 21(2), 115-121(2020) [35] Zhou, S.:A neighborhood union condition for fractional (a, b, k)-critical covered graphs.Discret.Appl.Math.https://doi.org/10.1016/j.dam.2021.05.022(2021) [36] Chen, C.:Toughness of graphs and[2, b]-factors.Graph.Comb.10, 97-100(1994) |