[1] Kleinberg, J.: Bursty and hierarchical structure in streams. Data Min. Knowl. Discov. 7(4), 373–397(2003) [2] Fung, G.P.C., Yu, J.X., Yu, P.S., Lu, H.: Parameter free bursty events detection in text streams. In: Proceedings of the 31st international conference on Very large data bases, pp. 181–192. ACM (2005) [3] Wang, M., Madhyastha, T., Chan, N.H., Papadimitriou, S., Faloutsos, C.: Data mining meets performance evaluation: fast algorithms for modeling bursty traffic. In: Proceedings 18th International Conference on Data Engineering, pp. 507–516. IEEE (2002). https://doi.org/10.1109/ICDE.2002.994770 [4] Zhang, X.: Fast algorithms for burst detection. Ph.D. thesis, New York University, Graduate School of Arts and Science (2006) [5] Neill, D.B., Moore, A.W.: A fast multi-resolution method for detection of significant spatial disease clusters. In: Advances in Neural Information Processing Systems, pp. 651–658. MIT Press (2004) [6] Neill, D.B., Moore, A.W.: Anomalous spatial cluster detection. In: Proceedings of the KDD 2005 Workshop on Data Mining Methods for Anomaly Detection (2005) [7] Neill, D.B., Moore, A.W., Pereira, F., Mitchell, T.M.: Detecting significant multidimensional spatial clusters. In: Advances in Neural Information Processing Systems, pp. 969–976(2005) [8] Saul, L.K., Weiss, Y., Bottou, L.: Advances in Neural Information Processing Systems 17(2005) [9] Thrun, S., Saul, L.K., Schölkopf, B.: Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference, vol. 16. MIT Press (2004) [10] Bakkum, D.J., Radivojevic, M., Frey, U., Franke, F., Hierlemann, A., Takahashi, H.: Parameters for burst detection. Front. Comput. Neurosci. 7, 193(2014) [11] Wagenaar, D., DeMarse, T.B., Potter, S.M.: Meabench: a toolset for multi-electrode data acquisition and on-line analysis. In: Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005, pp. 518–521. IEEE (2005) [12] Romsaiyud, W.: Detecting emergency events and geo-location awareness from twitter streams. In: The International Conference on E-Technologies and Business on the Web (EBW2013), pp. 22–27(2013) [13] Weng, J., Lee, B.S.: Event detection in twitter. In: Fifth International AAAI Conference on Weblogs and Social Media, pp.17–21(2011) [14] Vlachos, M., Meek, C., Vagena, Z., Gunopulos, D.: Identifying similarities, periodicities and bursts for online search queries. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 131–142(2004). https://doi.org/10.1145/1007568.1007586 [15] Zhang, Y., Hua, W., Yuan, S.: Mapping the scientific research on open data: a bibliometric review. Learned Publ. 31(2), 95–106(2018) [16] Heydari, A., ali Tavakoli, M., Salim, N., Heydari, Z.: Detection of review spam: a survey. Expert Syst. Appl. 42(7), 3634–3642(2015) [17] Yamamoto, S., Wakabayashi, K., Kando, N., Satoh, T.: Twitter user tagging method based on burst time series. Int. J. Web Inf. Syst. 12(3), 292–311(2016) [18] Huyen, N.T.M., Roussanaly, A., Vinh, H.T., et al.: A hybrid approach to word segmentation of vietnamese texts. In: International conference on language and automata theory and applications, pp. 240–249. Springer, Berlin (2008) [19] Hong, T.V.T., Do, P.: Developing a graph-based system for storing, exploiting and visualizing text stream. In: Proceedings of the 2nd international conference on machine learning and soft computing, pp. 82–86(2018). https://doi.org/10.1145/3184066.3184084 [20] Krishnamoorthy, M., Suresh, S., Alagappan, S., et al.: Deep learning techniques and optimization strategies in big data analytics: automated transfer learning of convolutional neural networks using enas algorithm. In: Deep Learning Techniques and Optimization Strategies in Big Data Analytics, pp. 142–153. IGI Global (2020) [21] Vasant, P.: Intelligent Computing & Optimization, vol. 866. Springer, Berlin (2019) |