[1] Chai, Q.Q., Yang, C.H., Teo, K.L., Gui, W.H.:Optimal control of an industrial-scale evaporation process:sodium aluminate solution. Control Eng. Pract. 20, 618-628(2012) [2] Liu, C.Y., Gong, Z.H.:Optimal control of switched systems arising in fermentation processes. Spring Optim. Appl. 97, 120(2014) [3] Wang, L., Gui, W., Teo, K.L., Loxton, R.C., Yang, C.:Time delayed optimal control problems with multiple characteristic time points:computation and industrial applications. J. Ind. Manag. Optim. 5, 705-718(2009) [4] Liu, C.Y., Gong, Z.H.:Modelling and optimal control of a time-delayed switched system in fed-batch process. J. Franklin Inst. 351, 840-856(2014) [5] Deindoerfer, F.H., Humphrey, A.E.:Design of multistage systems for simple fermentation processes. Ind. Eng. Chem. 51, 809-812(1959) [6] Liu, C.Y., Gong, Z.H., Teo, K.L., Sun, J., Caccetta, L.:Robust multi-objective optimal switching control arising in 1,3-propanediol microbial fed-batch process. Nonlinear Anal. Hybrid Syst. 25, 1-20(2017) [7] Liu, C.Y., Loxton, R.C., Lin, Q., Teo, K.L.:Dynamic optimization for switched time-delay systems with state-dependent switching conditions. SIAM J. Control Optim. 56, 3499-3523(2018) [8] Dadkhah, M., Farahi, M.H., Heydari, A.:Optimal control of a class of non-linear time-delay systems via hybrid functions. IMA J. Math. Control Inf. 34, 255-270(2017) [9] Göllmann, L., Maurer, H.:Theory and applications of optimal control problems with multiple timedelays. J. Ind. Manag. Optim. 1, 413-441(2014) [10] Gong, Z., Liu, C., Wang, Y.:Optimal control of switched systems with multiple time-delays and a cost on changing control. J. Ind. Manag. Optim. 13(2), 183-198(2017) [11] Jajarmi, A., Hajipour, M.:An efficient finite differencr method for the time-delay optimal control problems with time-varying delay. Asian J. Control 2, 1-10(2017) [12] Li, R., Teo, K.L., Wong, K.H., Duan, G.R.:Control parameterization enhancing transform for optimal control of switched systems. Math. Comput. Modell. 43, 1393-1403(2006) [13] Yu, C.J., Lin, Q., Loxton, R.C., Teo, K.L., Wang, G.:A hybrid time-scaling transformation for timedelay optimal control problems. J. Optim. Theory Appl. 169, 876-901(2016) [14] Lin, Q., Loxton, R.C., Teo, K.L.:The control parameterization method for nonlinear optimal control:a survery. J. Ind. Manag. Optim. 10(1), 275-309(2014) [15] Lee, H.W.J., Teo, K.L., Rehbock, V., Jennings, L.S.:Control parametrization enhancing technique for time optimal control problems. Dyn. Syst. Appl. 6, 243-261(1997) [16] Lee, H.W.J., Teo, K.L., Rehbock, V., Jennings, L.S.:Control parameterization enhancing technique for optimal discrete-valued control problems. Automatica 35, 1401-1407(1999) [17] Teo, K.L., Liu, Y., Lee, W.R., Jennings, L.S., Wang, S.:Numerical solution of an optimal control problem with variable time points in the objective function. ANZIAM J. 4, 463-478(2002) [18] Liu, C.Y., Loxton, R.C., Teo, K.L.:A computational method for solving time-delay optimal control problems with free terminal time. Syst. Control Lett. 72, 53-60(2014) [19] Lin, Q., Loxton, R.C., Teo, K.L., Wu, Y.H.:A new computational method for optimizing nonlinear impulsive systems. Dyn. Contin. Discrete Impulsive Syst. B 1, 59-76(2011) [20] Wu, D., Bai, Y.Q., Yu, C.J.:A new computational approach for optimal control problems with multiple time-delay. Automatica 101, 388-395(2019) [21] Loxton, R.C., Teo, K.L., Rehbock, V., Yiu, K.F.C.:Optimal control problems with a continuous inequality constraint on the state and the control. Automatica 45, 2250-2257(2009) [22] Li, B., Yu, C.J., Teo, K.L.:An exact penalty function method for continuous inequality constrained optimal control problem. J. Optim. Theory Appl. 2, 151-260(2011) [23] Chai, Q.Q., Wang, W.:A computational method for free terminal time optimal control problem governed by nonlinear time delayed systems. Appl. Math. Model. 53, 242-250(2018) [24] Loxton, R.C., Teo, K.L., Rehbock, V.:Optimal control problems with multiple characteristic time points in the objective and constraints. Automatica 44, 2923-2929(2008) [25] Loxton, R.C., Teo, K.L., Rehbock, V.:Computational method for a class of switched system optimal control problems. IEEE Trans. Autom. Control 10, 2455-2460(2009) [26] Yu, C.J., Li, B., Loxton, R.C., Teo, K.L.:Optimal discrete-valued control computation. J. Global Optim. 56(2), 503-518(2013) [27] Hubert, H.:Topics in optimization:6 mathematical foundations of system optimization. Math. Sci. Eng. 31, 126-197(1967) [28] Teo, K.L., Goh, C.J., Wong, K.H.:A Unified Computational Approach to Optimal Control Problems. Longman Scientific and Technical, Essex (1991) [29] Ahmed, N.U.:Dynamic Systems and Control with Applications. World Scientific, Singapore (2006) [30] Robinson, J.C.:An Introduction to Ordinary Differential Equations. Springer, Berlin (1961) [31] Liu, C.Y., Loxton, R.C., Teo, K.L.:Switching time and parameter optimization in nonlinear switched systems with multiple time-delays. J. Optim. Theory Appl. 80, 569-584(2015) [32] Wu, C.Z., Teo, K.L., Li, R., Zhao, Y.:Optimal control of switched systems with time delay. Appl. Math. Lett. 19(10), 1062-1067(2006) |