[1] Zhang, P., Li, A.:Algorithmic aspects of homophyly of networks. Theor. Comput. Sci. 593, 117-131(2015) [2] Harary, F.:Graph Theory. Addison-Wesley, Reading (1969) [3] Lovász, L.:Submodular functions and convexity. In:Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming the State of the Art, pp. 235-257. Springer, Berlin (1983) [4] Zhang, P., Jiang, T., Li, A.:Improved approximation algorithms for the maximum happy vertices and edgesproblems.In:Wang,L.,Zhu,D.(eds.)InternationalComputingandCombinatoricsConference, pp. 159-170. Springer, Berlin (2015) [5] Zhang, P., Xu, Y., Jiang, T., Li, A., Lin, G., Miyano, E.:Improved approximation algorithms for the maximum happy vertices and edges problems. Algorithmica 80(5), 1412-1438(2017) [6] Zhao,L.,Nagamochi,H.,Ibaraki,T.:Greedysplittingalgorithmsforapproximatingmultiwaypartition problems. Math. Prog. 102, 167-183(2005) [7] Chekuri, C., Ene, A.:Approximation algorithms for submodular multiway partition. In:IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), 2011, IEEE, pp. 807-816(2011a) [8] Ene, A., Vondrák, J., Wu, Y.:Local distribution and the symmetry gap:Approximability of multiway partitioning problems. In:Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp. 306-325(2013) [9] Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:The complexity of multiterminal cuts. SIAM J. Comput. 23, 864-894(1994) [10] Garg, N., Vazirani, V.V., Yannakakis, M.:Multiway cuts in node weighted graphs. J. Algorithms 50, 49-61(2004) [11] Okumoto, K., Fukunaga, T., Nagamochi, H.:Divide-and-conquer algorithms for partitioning hypergraphs and submodular systems. Algorithmica 62, 787-806(2012) [12] Čalinescu, G., Karloff, H., Rabani, Y.:An improved approximation algorithm for multiway cut. In:Proceedings of the thirtieth annual ACM symposium on Theory of computing, ACM, pp. 48-52(1998) [13] Freund, A., Karloff, H.:A lower bound of 8/(7+ 1/k-1) on the integrality ratio of the Čalinescu-Karloff-Rabani relaxation for multiway cut. Inf. Process. Lett. 75, 43-50(2000) [14] Karger, D.R., Klein, P., Stein, C., Thorup, M., Young, N.E.:Rounding algorithms for a geometric embedding of minimum multiway cut. Math. Oper. Res. 29, 436-461(2004) [15] Buchbinder,N.,Naor,J.S.,Schwartz,R.:Simplexpartitioningviaexponentialclocksandthemultiway cut problem. In:Proceedings of the forty-fifth annual ACM symposium on Theory of computing, ACM, pp. 535-544(2013) [16] Sharma, A., Vondrák, J.:Multiway cut, pairwise realizable distributions, and descending thresholds. In:Proceedings of the 46th Annual ACM Symposium on Theory of Computing, ACM, pp. 724-733(2014) [17] Langberg, M., Rabani. Y., Swamy, C.:Approximation algorithms for graph homomorphism problems. In:Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 176-187. Springer, Berlin (2006) [18] Chekuri, C., Ene, A.:Submodular cost allocation problem and applications. In:Automata, Languages and Programming, pp 354-366. Springer, Berlin (2011) [19] Lehmann, B., Lehmann, D., Nisan, N.:Combinatorial auctions with decreasing marginal utilities. In:Proceedings of the 3rd ACM conference on Electronic Commerce, ACM, pp. 18-28(2001) [20] Feige, U., Vondrak, J.:The allocation problem with submodular utility functions. In:Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (2006) [21] Dobzinski, S., Schapira, M.:An improved approximation algorithm for combinatorial auctions with submodular bidders. In:Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, Society for Industrial and Applied Mathematics, pp 1064-1073(2006) [22] Feige, U.:On maximizing welfare when utility functions are subadditive. SIAM J. Comput. 39, 122-142(2009) [23] Khot, S., Lipton, R.J., Markakis, E., Mehta, A.:Inapproximability results for combinatorial auctions with submodular utility functions. Algorithmica 52, 3-18(2008) [24] Garey,M.R.,Johnson,D.S.:ComputersandIntractability:AGuidetotheTheoryofNP-Completeness. W. H. Freeman and Company, San Francisco (1979) [25] Vondrák,J.:Symmetryandapproximabilityofsubmodularmaximizationproblems.SIAMJ.Comput. 42, 265-304(2013) [26] Brooks, R.L.:On colouring the nodes of a network. Math. Proc. Camb. Philos. Soc. 37, 194-197(1941) [27] Lovász, L.:Three short proofs in graph theory. J. Comb. Theory Ser. B 19(3), 269-271(1975) [28] Austrin, P., Khot, S., Safra, M.:Inapproximability of vertex cover and independent set in bounded degree graphs. In:24th Annual IEEE Conference on Computational Complexity, pp 74-80(2009) |