[1] |
Mangasarian, O.L.:Second and higher-order duality in nonlinear programming. J. Math. Anal. Appl. 51, 607-620(1975)
|
[2] |
Mond, B., Zhang, J.:Higher-order invexity and duality in mathematical programming. In:Crouzeix, J.P., et al. (eds.) Generalized Convexity, Generalized Monotonicity:Recent Results, pp. 357-372. Kluwer Academic, Dordrecht (1998)
|
[3] |
Ahmad, I., Husain, Z.:Multiobjective mixed symmetric duality involving cones. Comput. Math. Appl. 59, 319-326(2010)
|
[4] |
Chandra, S., Husain, I., Abha:On mixed symmetric duality in mathematical programming. Opsearch 36(2), 165-171(1999)
|
[5] |
Yang, X.M., Teo, K.L., Yang, X.Q.:Mixed symmetric duality in nondifferentiable mathematical programming. Indian J. Pure Appl. Math. 34(5), 805-815(2003)
|
[6] |
Chen, X.:Higher-order symmetric duality in nondifferentiablemultiobjective programming problems. J. Math. Anal. Appl. 290, 423-435(2004)
|
[7] |
Ahmad, I.:Multiobjective mixed symmetric duality with invexity. N. Z. J. Math. 34(1), 1-9(2005)
|
[8] |
Bector, C.R., Chandra, S., Abha:On mixed symmetric duality in multiobjective programming. Opsearch 36(4), 399-407(1999)
|
[9] |
Ahmad, I.:Unified higher-order duality in nondifferentiable multiobjective programming involving cones. Math. Comput. Model. 55(3-4), 419-425(2012)
|
[10] |
Agarwal, R.P., Ahmad, I., Gupta, S.K., Kailey, N.:Generalized second-order mixed symmetric duality in nondifferentiable mathematical programming. Abstr. Appl. Anal. (2011). https://doi.org/10.1155/2011/103597
|
[11] |
Gulati, T.R., Gupta, S.K.:Wolfe type second order symmetric duality in nondifferentiable programming. J. Math. Anal. Appl. 310, 247-253(2005)
|
[12] |
Gulati, T.R., Gupta, S.K.:Higher order nondifferentiable symmetric duality with generalized Fconvexity. J. Math. Anal. Appl. 329, 229-237(2007)
|
[13] |
Gulati, T.R., Verma, K.:Nondifferentiable higher order symmetric duality under invexity/generalized invexity. Filomat 28(8), 1661-1674(2014)
|
[14] |
Hou, S.H., Yang, X.M.:On second-order symmetric duality in nondifferentiable programming. J. Math. Anal. Appl. 255, 488-491(2001)
|
[15] |
Verma, K., Gulati, T.R.:Higher order symmetric duality using generalized invexity. In:Proceeding of 3rd International Conference on Operations Research and Statistics (ORS) (2013). https://doi.org/10.5176/2251-1938_ORS13.16
|
[16] |
Verma, K., Gulati, T.R.:Wolfe type higher order symmetric duality under invexity. J. Appl. Math. Inform. 32, 153-159(2014)
|
[17] |
Chandra, S., Goyal, A., Husain, I.:On symmetric duality in mathematical programming with Fconvexity. Optimization 43, 1-18(1998)
|
[18] |
Mond, B., Schechter, M.:Nondifferentiable symmetric duality. Bull. Aust. Math. Soc. 53, 177-188(1996)
|