[1] |
Alizadeh, F., Goldfarb, D.:Second-order cone programming. Math. Program. 95, 3-51(2003)
|
[2] |
Ferris, M.C., Mangasarian, O.L., Pang, J.S.:Complementarity:Applications, Algorithms and Extensions. Kluwer Academic Publishers, Dordrecht (2001)
|
[3] |
Monteiro, R.D.C., Tsuchiya, T.:Polynomial convergence of primal-dual algorithms for the secondorder cone programs based on the MZ-family of directions. Math. Program. 88, 61-83(2000)
|
[4] |
Tsuchiya, T.:A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming. Optim. Methods Softw. 11, 141-182(1999)
|
[5] |
Chen, X.D., Sun, D., Sun, J.:Complementarity functions and numerical experiments for second-order cone complementarity problems. Comput. Optim. Appl. 25, 39-56(2003)
|
[6] |
Fukushima, M., Luo, Z.Q., Tseng, P.:Smoothing functions for second-order cone complementarity problems. SIAM J. Optim. 12, 436-460(2002)
|
[7] |
Hayashi, S., Yamashita, N., Fukushima, M.:A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593-615(2005)
|
[8] |
Kanzow, C., Ferenczi, I., Fukushima, M.:On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity. SIAM J. Optim. 20, 297-320(2009)
|
[9] |
Pan, S.H., Chen, J.S.:A damped Gauss-Newton method for the second-order cone complementarity problem. Appl. Math. Optim. 59, 293-318(2009)
|
[10] |
Chen, J.S., Tseng, P.:An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104, 293-327(2005)
|
[11] |
Chen, J.S.:Two classes of merit functions for the second-order cone complementarity problem. Math. Methods Oper. Res. 64, 495-519(2006)
|
[12] |
Chen, J.S.:A new merit function and its related problems for the second-order cone complementarity problem. Pac. J. Optim. 2, 167-179(2006)
|
[13] |
Tseng, P.:Growth behavior of a class of merit functions for the nonlinear complementarity problem. J. Optim. Theory Appl. 89, 17-37(1996)
|
[14] |
Chen, X., Fukushima, M.:Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res. 30, 1022-1038(2005)
|
[15] |
Chen, X., Zhang, C., Fukushima, M.:Robust solution of monotone stochastic linear complementarity problems. Math. Program. 117, 51-80(2009)
|
[16] |
Fang, H., Chen, X., Fukushima, M.:Stochastic R0 matrix linear complementarity problems. SIAM J. Optim. 18, 482-506(2007)
|
[17] |
Lin, G.H., Chen, X., Fukushima, M.:New restricted NCP function and their applications to stochastic NCP and stochastic MPEC. Optimization 56, 641-753(2007)
|
[18] |
Lin, G.H., Fukushima, M.:New reformulations for stochastic nonlinear complementarity problems. Optim. Methods Softw. 21, 551-564(2006)
|
[19] |
Zhang, C., Chen, X.:Stochastic nonlinear complementarity problem and applications to traffic equilibrium under uncertainty. J. Optim. Theory Appl. 137, 277-295(2008)
|
[20] |
Faraut, J., Korányi, A.:Analysis on Symmetric Cones. Oxford Mathematical Monographs. Oxford University Press, New York (1994)
|
[21] |
Mordukhovich, B.S.:Generalized differential calculus for nonsmooth and set-valued mappings. J. Math. Anal. Appl. 183, 250-288(1994)
|
[22] |
Aubin, J.P.:Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9, 87-111(1994)
|
[23] |
Robinson, S.M.:Stability theory for systems of inequalities. Part I:linear systems. SIAM J. Numer. Anal. 12, 754-769(1975)
|
[24] |
Rockafellar, R.T., Wets, R.J.:Variational Analysis. Springer, New York (1998)
|
[25] |
Ye, J.J., Ye, X.Y.:Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22, 977-997(1997)
|
[26] |
Ruszczý nski, A., Shapiro, A.:Stochastic Programming. Handbooks in Operations Research and Management Science. Elsevier, Amsterdam (2003)
|
[27] |
Kong, L., Tuncel, L., Xiu, N.:Vector-valued implicit Lagrangian for symmetric cone complementarity problems. Asia-Pacific J. Oper. Res. 26, 199-233(2009)
|
[28] |
Chung, K.L.:A Course in Probability Theory. Academic Press, New York (1974)
|
[29] |
Ye, J.J.:Constraint qualifications and necessary optimality conditions for optimization problems with variational inequality constraints. SIAM J. Optim. 10, 943-962(2000)
|
[30] |
Mordukhovich, B.S.:Variational Analysis and Generalized Differentiation:I and Ⅱ. Springer, Berlin (2006)
|
[31] |
Robinson, S.M.:Some continuity properties of polyhedral multifunctions. Math. Program. Stud. 14, 206-214(1981)
|
[32] |
Henrion, R., Outrata, J.V.:Calmness of constraint systems with applications. Math. Program. 104, 437-464(2005)
|
[33] |
Shapiro, A., Xu, H.:Stochastic mathematical programs with equilibrium constraints, modelling and sample average approximation. Optimization 57, 395-418(2008)
|
[34] |
Farivar, M., Low, S.H.:Branch flow model:relaxations and convexification. In:IEEE 51st Annual Conference on Decision and Control, pp. 3672-3679(2012)
|
[35] |
Gan, L., Li, N., Topcu, U., Low, S.H.:Exact convex relaxation of optimal power flow in radial networks. IEEE Trans. Autom. Control 60, 72-87(2015)
|
[36] |
Lopez, M., Still, G.:Semi-infinite programming. Eur. J. Oper. Res. 180, 491-518(2007)
|