Journal of the Operations Research Society of China ›› 2019, Vol. 7 ›› Issue (2): 251-283.doi: 10.1007/s40305-018-0225-3

Special Issue: Continuous Optimization

Previous Articles     Next Articles

A New Complementarity Function and Applications in Stochastic Second-Order Cone Complementarity Problems

Guo Sun1,2, Jin Zhang3, Li-Ying Yu1, Gui-Hua Lin1   

  1. 1 School of Management, Shanghai University, Shanghai 200444, China;
    2 School of Management Science, Qufu Normal University, Qufu 276800, Shandong, China;
    3 Department of Mathematics, Hong Kong Baptist University, Hong Kong, HKBU Institute of Research and Continuing Education, Shenzhen, China
  • Received:2018-02-03 Revised:2018-08-08 Online:2019-06-30 Published:2019-06-30
  • Contact: Guo Sun, Jin Zhang, Li-Ying Yu, Gui-Hua Lin E-mail:qrsunguo@163.com;zhangjin@hkbu.edu.hk;yuliying@shu.edu.cn;guihualin@shu.edu.cn
  • Supported by:
    This work was supported in part by the National Natural Science Foundation of China (Nos. 71831008, 11671250, 11431004 and 11601458), Humanity and Social Science Foundation of Ministry of Education of China (No. 15YJA630034), Shandong Province Natural Science Fund (No. ZR2014AM012), Higher Educational Science and Technology Program of Shandong Province (No. J13LI09), and Scientific Research of Young Scholar of Qufu Normal University (No. XKJ201315).

Abstract: This paper considers the so-called expected residual minimization (ERM) formulation for stochastic second-order cone complementarity problems, which is based on a new complementarity function called termwise residual complementarity function associated with second-order cone. We show that the ERM model has bounded level sets under the stochastic weak R0-property. We further derive some error bound results under either the strong monotonicity or some kind of constraint qualifications. Then, we apply the Monte Carlo approximation techniques to solve the ERM model and establish a comprehensive convergence analysis. Furthermore, we report some numerical results on a stochastic second-order cone model for optimal power flow in radial networks.

Key words: Stochastic second-order cone complementarity problem, Complementarity function, Expected Residual Minimization (ERM) model, Monte Carlo method, Error bound, Optimal power flow

CLC Number: