[1] |
James, G.M., Paulson, C., Rusmevichientong, P.:The constrained lasso. Technical report. University of Southern California (2013)
|
[2] |
Rockafellar, R.T.:Large-scale extended linear-quadratic programming and multistage optimization. Advances in Numerical Partial Differential Equations and Optimization:In:Proceedings of the Fifth Mexico-United States Workshop, vol. 2, pp. 247-261(1991)
|
[3] |
Hong, M., Chang, T.-H., Wang, X., Razaviyayn, M., Ma, S., Luo, Z.-Q.:A block successive upper bound minimization method of multipliers for linearly constrained convex optimization (2014). arXiv:1401.7079
|
[4] |
Cui, Y., Li, X., Sun, D., Toh, K.-C.:On the convergence properties of a majorized ADMM for linearly constrained convex optimization problems with coupled objective functions. J. Optim. Theory Appl. 169(3), 1013-1041(2016)
|
[5] |
Chen, C., Li, M., Liu, X., Ye, Y.:On the convergence of multi-block alternating direction method of multipliers and block coordinate descent method (2015). arXiv:1508.00193
|
[6] |
Gao, X., Zhang, S.:First-order algorithms for convex optimization with nonseparate objective and coupled constraints. J. Oper. Res. Soc. China 5(2), 131-159(2017)
|
[7] |
Glowinski, R., Marrocco, A.:Sur l'approximation, par eléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires. ESAIM Math. Model. Numer. Anal. 9(R2), 41-76(1975)
|
[8] |
Gabay, D., Mercier, B.:A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17-40(1976)
|
[9] |
Glowinski, R., Le Tallec, P.:Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, vol. 9. SIAM, Philadelphia (1989)
|
[10] |
Eckstein, J., Bertsekas, D.:On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1-3), 293-318(1992)
|
[11] |
He, B., Yuan, X.:On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700-709(2012)
|
[12] |
Monteiro, R.D., Svaiter, B.F.:Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23(1), 475-507(2013)
|
[13] |
Deng, W., Yin, W.:On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889-916(2015)
|
[14] |
Lin, T., Ma, S., Zhang, S.:On the sublinear convergence rate of multi-block admm. J. Oper. Res. Soc. China 3(3), 251-274(2015)
|
[15] |
Hong, M., Luo, Z.:On the linear convergence of the alternating direction method of multipliers. Math. Program. 162, 165-199(2017)
|
[16] |
Boley, D.:Local linear convergence of the alternating direction method of multipliers on quadratic or linear programs. SIAM J. Optim. 23(4), 2183-2207(2013)
|
[17] |
Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.:Rasl:Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233- 2246(2012)
|
[18] |
Tao, M., Yuan, X.:Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21(1), 57-81(2011)
|
[19] |
Chen, C., He, B., Ye, Y., Yuan, X.:The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155(1-2), 57-79(2016)
|
[20] |
Deng, W., Lai, M.-J., Peng, Z., Yin, W.:Parallel multi-block ADMM with o(1/k) convergence. J. Sci. Comput. 71, 1-25(2016)
|
[21] |
He, B., Tao, M., Yuan, X.:Convergence rate and iteration complexity on the alternating direction method of multipliers with a substitution procedure for separable convex programming. Math. Oper. Res. 42(3), 662-691(2017)
|
[22] |
He, B., Hou, L., Yuan, X.:On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming. SIAM J. Optim. 25(4), 2274-2312(2015)
|
[23] |
He, B., Tao, M., Yuan, X.:Alternating direction method with gaussian back substitution for separable convex programming. SIAM J. Optim. 22(2), 313-340(2012)
|
[24] |
Xu, Y.:Hybrid Jacobian and Gauss-Seidel proximal block coordinate update methods for linearly constrained convex programming. SIAM J. Optim. 28(1), 646-670(2018)
|
[25] |
Chen, C., Shen, Y., You, Y.:On the convergence analysis of the alternating direction method of multipliers with three blocks. In:Abstract and Applied Analysis, vol. 2013. Hindawi Publishing Corporation (2013)
|
[26] |
Cai, X., Han, D., Yuan, X.:On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function. Comput. Optim. Appl. 66(1), 39-73(2017)
|
[27] |
Lin, T., Ma, S., Zhang, S.:On the global linear convergence of the admm with multiblock variables. SIAM J. Optim. 25(3), 1478-1497(2015)
|
[28] |
Li, M., Sun, D., Toh, K.-C.:A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block. Asia-Pac. J. Oper. Res. 32(04), 1550024(2015)
|
[29] |
Han, D., Yuan, X.:A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155(1), 227-238(2012)
|
[30] |
Wang, Y., Yin, W., Zeng, J.:Global convergence of ADMM in nonconvex nonsmooth optimization (2015). arXiv:1511.06324
|
[31] |
Lin, T., Ma, S., Zhang, S.:Iteration complexity analysis of multi-block admm for a family of convex minimization without strong convexity. J. Sci. Comput. 69, 1-30(2016)
|
[32] |
Chen, L., Sun, D., Toh, K.-C.:An efficient inexact symmetric gauss-seidel based majorized ADMM for high-dimensional convex composite conic programming. Math. Program. 161, 237-270(2017)
|
[33] |
Li, X., Sun, D., Toh, K.-C.:A schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Program. 155(1-2), 333-373(2016)
|
[34] |
Sun, D., Toh, K.-C., Yang, L.:A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints. SIAM J. Optim. 25(2), 882-915(2015)
|
[35] |
Sun, R., Luo, Z.-Q., Ye, Y.:On the expected convergence of randomly permuted ADMM (2015). arXiv:1503.06387
|
[36] |
Dang, C., Lan, G.:Randomized first-order methods for saddle point optimization (2014). arXiv:1409.8625
|
[37] |
Chambolle, A., Pock, T.:A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120-145(2011)
|
[38] |
Peng, Z., Wu, T., Xu, Y., Yan, M., Yin, W.:Coordinate friendly structures, algorithms and applications. Ann. Math. Sci. Appl. 1(1), 57-119(2016)
|
[39] |
Gao, X., Jiang, B., Zhang, S.:On the information-adaptive variants of the ADMM:an iteration complexity perspective. J. Sci. Comput. 76(1), 327-363(2018)
|
[40] |
Xu, Y., Zhang, S.:Accelerated primal-dual proximal block coordinate updating methods for constrained convex optimization. Comput. Optim. Appl. 70(1), 91-128(2018)
|
[41] |
Dang, C.D., Lan, G.:Stochastic block mirror descent methods for nonsmooth and stochastic optimization. SIAM J. Optim. 25(2), 856-881(2015)
|
[42] |
Xu, Y., Yin, W.:Block stochastic gradient iteration for convex and nonconvex optimization. SIAM J. Optim. 25(3), 1686-1716(2015)
|
[43] |
Grant, M., Boyd, S., Ye, Y.:CVX:Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx (2013)
|
[44] |
Nesterov, Y.:Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2), 341-362(2012)
|
[45] |
Richtárik, P., Takáč, M.:Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(1-2), 1-38(2014)
|
[46] |
Lu, Z., Xiao, L.:On the complexity analysis of randomized block-coordinate descent methods. Math. Program. 152(1-2), 615-642(2015)
|
[47] |
Richtárik, P., Takáč,M.:Parallel coordinate descentmethodsfor big data optimization.Math. Program. 156, 1-52(2015)
|