Journal of the Operations Research Society of China ›› 2025, Vol. 13 ›› Issue (2): 463-483.doi: 10.1007/s40305-023-00465-5

Previous Articles     Next Articles

On Ratio-k-Cuts of Graphs

Bo Bai1, Xiang Chen1, Jian-Feng Hou2, Gong Zhang1   

  1. 1. Theory Lab HK, Huawei Tech. Investment Co., Limited, Hong Kong, China;
    2. Center of Discrete Mathematics, Fuzhou University, Fujian 350116, China
  • Received:2022-02-12 Revised:2022-12-19 Online:2025-06-30 Published:2025-07-07
  • Contact: Jian-Feng Hou E-mail:jfhou@fzu.edu.cn
  • Supported by:
    The research of the third author was supported by the National Natural Science Foundation of China (No. 12071077), a project of Center for Applied Mathematics of Fujian Province, and a cooperation project of HUAWEI.

Abstract: Let G be a graph and \begin{document}$ (V_1,V_2,\cdots ,V_k) $\end{document} be a k-partition of G. For \begin{document}$ 1\leqslant i \lt j\leqslant k $\end{document}, the ratio of \begin{document}$ (V_i, V_j) $\end{document}, denoted by \begin{document}$ R(V_i, V_j) $\end{document}, is \begin{document}$ e(V_i, V_j)/(|V_i||V_j|) $\end{document}, where \begin{document}$ e(V_i,V_j) $\end{document} is the number of crossing edges. The minimum k-ratio of G, denoted by \begin{document}$ R_k(G) $\end{document}, is the minimum \begin{document}$ \sum _{1\leqslant i \lt j\leqslant k}R(V_i,V_j) $\end{document} over all k-partitions \begin{document}$ (V_1,V_2,\cdots ,V_k) $\end{document} of G. Let \begin{document}$ R(G)=R_2(G) $\end{document}. The ratio cut problem, posed by Wei and Cheng, and independently by Leighton and Rao, is an extension of the min-cut problem and has important applications in CAD. It is easy to see that \begin{document}$ R_k(G) $\end{document} is closely related to the density d(G) of a graph G. In this paper, we mainly give some results on \begin{document}$ R_k(G) $\end{document} with respect to d(G). First, we show that \begin{document}$ R_k(G)\leqslant {k \atopwithdelims ()2}(1+o(1))d(G) $\end{document} for graphs G and \begin{document}$ R_k(G)\leqslant (k-1)(1+o(1))d(G) $\end{document} for sparse graphs G. Then, we give some upper and lower bounds on R(G). In particular, we show \begin{document}$ R(G)\leqslant 4/(n-3) $\end{document} for every planar graph G with \begin{document}$ n\geqslant 4 $\end{document} vertices. At last, we consider the random graph G(n, p) and show that R(G(n, p)) can be determined asymptotically almost surely if \begin{document}$ p\geqslant C\log n/n $\end{document} for some constant \begin{document}$ C \gt 0 $\end{document}.

Key words: Partition, Min-cut, Ratio cut, Probabilistic method, Random graph

CLC Number: