[1] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 2nd edn. Wiley, New Jersey (2005) [2] Beemsterboer, B.J., Land, M.J., Teunter, R.H.: Flexible lot sizing in hybrid make-to-order/make-to-stock production planning. Eur. J. Oper. Res. 260(3), 1014-1023 (2017) [3] Chen, N., Teven, K., Wang, C.: A partitioning algorithm for markov decision processes with applications to market microstructure. Manag. Sci. 64(2), 784-803 (2018) [4] Steimle, L.N., Kaufman, D.L., Denton, B.T.: Multi-model Markov decision processes. IISE Trans. 53(10), 1124-1139 (2022) [5] Buchholz, P., Scheftelowitsch, D.: Computation of weighted sums of rewards for concurrent MDPs. Math. Methods Oper. Res. 89(1), 1-42 (2019) [6] Givan, R., Leach, S., Dean, T.: Bounded-parameter Markov decision processes. Artif. Intell. 122(1-2), 71-109 (2000) [7] Delgado, K.V., Sanner, S., de Barros, L.N.: Efficient solutions to factored MDPs with imprecise transition probabilities. Artif. Intell. 175(9-10), 1498-1527 (2011) [8] Witwicki, S.J., Melo, F.S., Capitan, J., Spaan, M.T.J.: A flexible approach to modeling unpredictable events in MDPs. In: Proceedings of Twenty-Third International Conference on Automated Planning and Scheduling ICAPS2013, pp. 260-268 (2013) [9] Duff, M.: Optimal learning: computational procedures for bayes-adaptive markov decision processes. Ph.D. thesis, University of Massachusetts Amherst, Amherst, MA (2002) [10] Castro, P. S., Precup, D.: Using linear programming for Bayesian exploration in Markov decision processes. In: International Joint Conference on Artificial Intelligence IJCAI2007, pp. 2437-2442 (2007) [11] Kumar, P.: Information theoretic learning methods for Markov decision processes with parametric uncertainty. Ph.D. thesis, University of Washington (2018). [12] Iyengar, G.: Robust dynamic programming. Math. Oper. Res. 30(2), 257-280 (2005) [13] Nilim, A., El Ghaoui, L.: Robust control of Markov decision processes with uncertain transition matrices. Oper. Res. 53(5), 780-798 (2005) [14] Delgado, K.V., de Barros, L.N., Dias, D.B., Sanner, S.: Real-time dynamic programming for Markov decision process with imprecise probabilities. Artif. Intell. 230(8), 192-223 (2016) [15] Moreira, D.A.M., Delgado, K.V., de Barros, L.N.: Robust probabilistic planning with ilao. Appl. Intell. 45(3), 662-672 (2016) [16] Delage, E., Shie, M.: Percentile optimization for markov decision processes with parameter uncertainty. Oper. Res. 58(1), 203-213 (2010) [17] Adulyasak, Y., Varakantham, P., Ahmed, A., Jaillet, P.: Solving uncertain MDPs with objectives that are separable over instantiations of model uncertainty. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, AAAI Press, pp. 3454-3460 (2015) [18] Ahmed, A., Varakantham, P., Lowalekar, M., Adulyasak, Y., Jaillet, P.: Sampling based approaches for minimizing regret in uncertain Markov decision processes (MDPs). J. Artif. Intell. Res. 59, 229-264 (2017) [19] Meraklı, M., Küçükyavuz, S.: Risk aversion to parameter uncertainty in Markov decision processes with an application to slow-onset disaster relief. IISE Trans. 52(8), 811-831 (2019) [20] Shani, G., Heckerman, D., Brafman, R.: An MDP-based recommender system. J. Mach. Learn. Res. 6(43), 1265-1295 (2005) [21] Chen, Q., Ayer, T., Chhatwal, J.: Sensitivity analysis in sequential decision models: a probabilistic approach. Med. Decis. Making 37(2), 243-252 (2017) [22] Bala, M.V., Mauskopf, J.A.: Optimal assignment of treatments to health states using a Markov decision model. Pharmacoeconomics 24(4), 345-354 (2006) |