[1] |
Benjamini, I., Lyons, R., Peres, Y., Schramm, O.:Uniform spanning forests. Ann. Probab. 29, 1-65(2001)
|
[2] |
Brown, T.J., Mallion, R.B., Pollak, P., Roth, A.:Some methods for counting the spanning trees in labelled molecular graphs, examined in relation to certain fullerenes. Discrete Appl. Math. 67, 51-66(1996)
|
[3] |
Caracciolo, S., Jacobsen, J.L., Saleur, H., Sokal, A.D., Sportiello, A.:Fermionic field theory for trees and forests. Phys. Rev. Lett. 93, 080601(2004)
|
[4] |
Deng, Y., Garoni, T.M., Sokal, A.D.:Ferromagnetic phase transition for the spanning-forest model (q → 0 limit of the Potts model) in three or more dimensions. Phys. Rev. Lett. 98, 030602(2007)
|
[5] |
Liu, C.J., Chow, Y.:Enumeration of forests in a graph. Proc. Am. Math. Soc. 83, 659-662(1981)
|
[6] |
Stark, D.:The asymptotic number of spanning forests of complete bipartite labelled graphs. Discrete Math. 313, 1256-1261(2013)
|
[7] |
Myrvold, W.:Counting k-component forests of a graph. Networks 22, 647-652(1992)
|
[8] |
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.:Computing the Tutte polynomial in vertexexponential time. In:Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 677-686. IEEE. New York (2008)
|
[9] |
Teranishi, Y.:The number of spanning forests of a graph. Discrete Math. 290, 259-267(2005)
|
[10] |
Jaeger, F., Vertigan, D., Welsh, D.:On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Philos. Soc. 108, 35-53(1990)
|
[11] |
Vertigan, D.L., Welsh, D.J.A.:The computational complexity of the Tutte plane:the bipartite case. Combin. Probab. Comput. 1, 181-187(1992)
|
[12] |
Gebauer, H., Okamoto, Y.:Fast exponential-time algorithms for the forest counting and the Tutte polynomial computation in graph classes. Int. J. Found. Comput. Sci. 20, 25-44(2009)
|
[13] |
Kirchhoff, G.:Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497-508(1847)
|
[14] |
Palmer, E.M.:On the spanning tree packing number of a graph:a survey. Discrete Math. 230, 13-21(2001)
|
[15] |
Comellas, F., Miralles, A., Liu, H., Zhang, Z.:The number of spanning trees of an infinite family of outerplanar, small-world and self-similar graphs. Phys. A 392, 2803-2806(2013)
|
[16] |
Bogdanowicz, Z.R.:Formulas for the number of spanning trees in a fan. Appl. Math. Sci. 2, 781-786(2008)
|
[17] |
Xiao, Y., Zhao, H.:New method for counting the number of spanning trees in a two-tree network. Phys. A 392, 4576-4583(2013)
|
[18] |
Zhang, Z., Wu, B., Comellas, F.:The number of spanning trees in Apollonian networks. Discrete Appl. Math. 169, 206-213(2014)
|
[19] |
Stones, R.J.:Computing the number of h-edge spanning forests in complete bipartite graphs. Discrete Math. Theor. Comput. Sci. 16, 313-326(2014)
|
[20] |
Robertson, N., Seymour, P.D.:Graph minors. Ⅱ. Algorithmic aspects of tree-width. J. Algorithms 7, 309-322(1986)
|
[21] |
Courcelle, B.:The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85, 12-75(1990)
|
[22] |
Arnborg, S., Lagergren, J., Seese, D.:Easy problems for tree-decomposable graphs. J. Algorithms 12, 308-340(1991)
|
[23] |
Borie, R.B., Parker, R.G., Tovey, C.A.:Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 555-581(1992)
|
[24] |
Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.:Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86-111(2015)
|
[25] |
Berend, D., Tassa, T.:Improved bounds on Bell numbers and on moments of sums of random variables. Probab. Math. Stat. 30, 185-205(2010)
|
[26] |
Bodlaender, H.L.:A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305-1317(1996)
|
[27] |
Bodlaender, H.L., Koster, A.M.:Treewidth computations I. Upper bounds. Inf. Comput. 208, 259-275(2010)
|
[28] |
Bodlaender, H.L.:A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209, 1-45(1998)
|
[29] |
Bondy, J.A., Murty, U.S.R.:Graph Theory. Springer, London (2008)
|
[30] |
Kloks, T.:Treewidth:Computations and Approximations. Lecture Notes in Computer Science, vol. 842. Springer, Berlin (1994)
|
[31] |
Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.:Solving connectivity problems parameterized by treewidth in single exponential time. In:Proceedings of Foundations of Computer Science, pp. 150-159. IEEE (2011)
|