Journal of the Operations Research Society of China ›› 2025, Vol. 13 ›› Issue (2): 440-451.doi: 10.1007/s40305-023-00475-3
Previous Articles Next Articles
Wei-Li Wu1, Zhao Zhang2, Ding-Zhu Du1
Received:
2022-10-05
Revised:
2022-12-16
Online:
2025-06-30
Published:
2025-07-07
Contact:
Zhao Zhang, Ding-Zhu Du
E-mail:hxhzz@sina.com;dzdu@utdallas.edu
Supported by:
CLC Number:
Wei-Li Wu, Zhao Zhang, Ding-Zhu Du. Global Approximation of Local Optimality: Nonsubmodular Optimization[J]. Journal of the Operations Research Society of China, 2025, 13(2): 440-451.
[1] Yang, W., Ma, J., Li, Y., Yan, R., Yuan, J., Weili, W., Li, D.: Marginal gains to maximize content spread in social networks. IEEE Trans. Comput. Soc. Syst. 6(3), 479-490 (2019) [2] Zhang, Y., Guo, J., Yang, W., Weili, W.: Targeted activation probability maximization problem in online social networks. IEEE Trans. Netw. Sci. Eng. 8(1), 294-304 (2021) [3] Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Trans. Knowl. Discov. Data 3(2), 1-23 (2009) [4] Habiba, H., Yu, Y., Berger-Wolf, T.Y., Saia, J.: Finding spread blockers in dynamic networks. In: Series SNAKDD’08, pp. 55-76 (2010) [5] Yan, R., Li, Y., Wu, W., Li, D., Wang, Y.: Rumor Blocking through Online Link Deletion on Social Networks. ACM Trans. Knowl. Discov. Data 13(2), 1-26 (2019) [6] Gai, L., Hongwei, D., Lidong, W., Zhu, J., Yuehua, B.: Blocking rumor by cut. J. Comb. Optim. 36(2), 392-399 (2018) [7] Tripathy, R.M., Bagchi, A., Mehta, S.: A study of rumor control strategies on social networks. In: Series CIKM’10. ACM (2010) [8] Nguyen, N.P., Yan, G., Thai, M.T., Eidenbenz, S.: Containment of misinformation spread in online social networks. In: Series WebSci’12, pp. 213-222. ACM (2012) [9] Tong, G.A., Du, D.-Z., Wu, W.: On misinformation containment in online social networks. In: NeurIPS, pp. 339-349 (2018) [10] Yan, R., Li, D., Weili, W., Ding-Zhu, D., Wang, Y.: Minimizing influence of rumors by blockers on social networks: algorithms and analysis. IEEE Trans. Netw. Sci. Eng. 7(3), 1067-1078 (2020) [11] Zhu, J., Ghosh, S., Weili, W.: Robust rumor blocking problem with uncertain rumor sources in social networks. World Wide Web 24(1), 229-247 (2021) [12] Guo, J., Li, Y., Weili, W.: Targeted protection maximization in social networks. IEEE Trans. Netw. Sci. Eng. 7(3), 1645-1655 (2020) [13] Guo, J., Chen, T., Weili, W.: A multi-feature diffusion model: rumor blocking in social networks. IEEE/ACM Trans. Netw. 29(1), 386-397 (2021) [14] Aral, S., Walker, D.: Creating social contagion through viral product design: a randomized trial of peer influence in networks. Manage. Sci. 57(9), 1623-1639 (2011) [15] Bonchi, F., Castillo, C., Gionis, A., Jaimes, A.: Social network analysis and mining for business applications. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 22 (2011) [16] Stibe, A.: Exploring social influence and incremental online persuasion on twitter: a longitudinal study. In: Mobile Web Information Systems, pp. 286-300. Springer International Publishing (2014) [17] Dong, L., Guo, Q., Weili, W.: Speech corpora subset selection based on time-continuous utterances features. J. Comb. Optim. 37(4), 1237-1248 (2019) [18] Dong, L., Guo, Q., Weili, W., Satpute, M.N.: A semantic relatedness preserved subset extraction method for language corpora based on pseudo-Boolean optimization. Theor. Comput. Sci. 836, 65-75 (2020) [19] Guo, J., Weili, W.: A novel scene of viral marketing for complementary products. IEEE Trans. Comput. Soc. Syst. 6(4), 797-808 (2019) [20] Yang, W., Yuan, J., Weili, W., Ma, J., Ding-Zhu, D.: Maximizing activity profit in social networks. IEEE Trans. Comput. Soc. Syst. 6(1), 117-126 (2019) [21] Zhu, J., Ghosh, S., Weili, W.: Group influence maximization problem in social networks. IEEE Trans. Comput. Soc. Syst. 6(6), 1156-1164 (2019) [22] Zhu, J., Zhu, J., Ghosh, S., Weili, W., Yuan, J.: Social influence maximization in hypergraph in social networks. IEEE Trans. Netw. Sci. Eng. 6(4), 801-811 (2019) [23] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd edn. Springer, Berlin (1988) [24] Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Program. 118, 237-251 (2009) [25] Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strong polynomial time. J. Comb. Theory (B) 80, 346-355 (2000) [26] Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003) [27] Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions: I. Math. Program. 14(1), 265-294 (1978) [28] Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385-393 (1982) [29] Feige, U., Mirrokni, V., Vondrák, J.: Maximizing nonmonotone submodular functions. In: Proceedings of the IEEE Foundations of Computer Science, pp. 461-471 (2007) [30] Lee, J., Mirrokni, V., Nagarajan, V., Sviridenko, M.: Nonmonotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the ACM Symposium on Theory of Computing, pp. 323-332 (2009) [31] Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. IEEE FOCS, pp. 570-579 (2011) [32] Svitkina, Z., Fleischer, L.: Submodular approximation: sampling-based algorithms and lower bounds. SIAM J. Comput. 40, 1715-1737 (2011) [33] Feige, U., Izsak, R.: Welfare maximization and the supermodular degree. In: ACM ITCS, pp. 247-256 (2013) [34] Feldman, M., Izsak, R.: Constrained monotone function maximization and the supermodular degree. In: ACM-SIAM SODA (2014) [35] Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. arXiv:1703.02100 (2017) [36] Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. arXiv:1102.3975 (2011) [37] Sviridenko, W.J., Vondrk, M.J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. Math. Oper. Res. 42(2), 1197-1218 (2017) [38] Wei, L., Chen, W., Lakshmanan, L.V.S.: From competition to complementarity: comparative influence diffusion and maximization. Proc. VLDB Endow. 9(2), 60-71 (2015) [39] Chen, W., Lin, T., Tan, Z., Zhao, M., Zhou, X.: Robus influence maximization. In: KDD’16, San Francisco, CA, USA (2016) [40] Wang, Z., Yang, Y., Pei, J., Chen, E.: Activity maximization by effective information diffusion in social networks. arXiv: 1610.07754v1 (2016) [41] Narasimhan, M., Bilmes, J.: A submodular-supermodular procedure with applications to discriminative structure learning. In: Proceedings of the UAI (2005) [42] Iyer, R., Bilmes, J.: Algorithms for approximate minimization of the difference between submodular functions. In: Proceedings of the UAI (2012) [43] Weili, W., Zhang, Z., Ding-Zhu, D.: Set function optimization. J Oper Res Soc China 7(2), 183-193 (2019) [44] Gao, C., Shuyang, G., Yang, R., Jiguo, Yu., Weili, W., Dachuan, X.: Interaction-aware influence maximization and iterated sandwich method. Theor. Comput. Sci. 821, 23-33 (2020) [45] Schäfer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20, 56-87 (1991) [46] Du, D.-Z., Pardalos, P.M., WuWuWu, W.: Mathematical Theory of Optimization. Kluwer Academic Publishers, New York (2001) [47] Ding-Zhu, D., Zhang, X.-S.: A convergence theorem of Rosen’s gradient projection method. Math. Program. 36, 135-144 (1986) [48] Ding-Zhu, D., Zhang, X.-S.: Global convergence of Rosen’s gradient projection method. Math. Program. 44, 357-366 (1989) [49] Maehara, T., Marumo, N., Murota, K.: Continuous relaxation for discrete DC programming. In: Proceedings of the 3rd International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences, pp. 181-190 (2015) [50] Chenchen, W., Wang, Y., Zaixin, L., Pardalos, P.M., Dachuan, X., Zhang, Z., Ding-Zhu, D.: Solving the degree-concentrated fault-tolerant spanning subgraph problem by DC programming. Math. Program. 169(1), 255-275 (2018) [51] Maehara, T., Murota, K.: A framework of discrete DC programming by discrete convex analysis. Math. Program. Ser. A 152, 435-466 (2015) [52] Fujishige, S.: Submodular Functions and Optimization, Annals of Discrete Mathematics, vol. 58. Elsevier Science, Amsterdam (2005) [53] Du, H., Zhang, Z., Duan, Z., Tian, C., Du, D.-Z.: Full view camera sensor coverage and group set coverage. In: Proceedings of 15th EAI International Wireless Internet Conference, Dallas, USA (2022) [54] Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford Science, New York (1991) [55] Ye, Y.: On the complexity of approximating a KKT point of quadratic programming. Math. Program. 80, 195-211 (1998) |
[1] | Peng-Xiang Pan, Jun-Ran Lichen, Wen-Cheng Wang, Li-Jian Cai, Jian-Ping Li. Approximation Algorithms for Solving the k-Chinese Postman Problem Under Interdiction Budget Constraints [J]. Journal of the Operations Research Society of China, 2025, 13(2): 535-554. |
[2] | Sheng-Min-Jie Chen, Dong-Lei Du, Wen-Guo Yang, Sui-Xiang Gao. Maximizing the Ratio of Monotone DR-Submodular Functions on Integer Lattice [J]. Journal of the Operations Research Society of China, 2025, 13(1): 142-160. |
[3] | Wen-Zhao Liu, Min Li. An Approximation Algorithm Based on Seeding Algorithm for Fuzzy k-Means Problem with Penalties [J]. Journal of the Operations Research Society of China, 2024, 12(2): 387-409. |
[4] | Bin Liu, Hui Su, Shu-Fang Gong, Qi-Zhi Fang. Adaptive Algorithms on Maximizing Monotone Nonsubmodular Functions [J]. Journal of the Operations Research Society of China, 2024, 12(2): 428-445. |
[5] | Hong-Ye Zheng, Suo-Gang Gao, Wen Liu, Bo Hou. An Approximation Algorithm for the Parallel-Machine Customer Order Scheduling with Delivery Time and Submodular Rejection Penalties [J]. Journal of the Operations Research Society of China, 2024, 12(2): 495-504. |
[6] | Zhong-Zheng Tang, Zhuo Diao. Approximation Algorithms on k-Correlation Clustering [J]. Journal of the Operations Research Society of China, 2023, 11(4): 911-924. |
[7] | Wei Yu, Rui-Yong Dai, Zhao-Hui Liu. Approximation Algorithms for Multi-vehicle Stacker Crane Problems [J]. Journal of the Operations Research Society of China, 2023, 11(1): 109-132. |
[8] | Jin-Shuang Guo, Wen Liu, Bo Hou. An Approximation Algorithm for P-prize-collecting Set Cover Problem [J]. Journal of the Operations Research Society of China, 2023, 11(1): 207-218. |
[9] | Zhong-Zheng Tang, Zhuo Diao. Approximation Algorithms on k-Cycle Transversal and k-Clique Transversal [J]. Journal of the Operations Research Society of China, 2021, 9(4): 883-892. |
[10] | Yao Xu, Yong Chen, Peng Zhang, Randy Goebel. Approximation Algorithms for Vertex Happiness [J]. Journal of the Operations Research Society of China, 2019, 7(3): 429-448. |
[11] | Yi-Jing Wang, Da-Chuan Xu, Yan-Jun Jiang, Dong-Mei Zhang. Minimizing Ratio of Monotone Non-submodular Functions [J]. Journal of the Operations Research Society of China, 2019, 7(3): 449-459. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||