[1] Chan, F., Chung, S.: Multi-criteria genetic optimisation for distribution network problems. Int. J. Adv. Manuf. Technol. 24, 517–532(2004) [2] Selim, H., Ozkarahan, I.: A supply chain distribution network design model: an interactive fuzzy goal progrprogra-based solution approach. Int. J. Adv. Manuf. Technol. 35, 401–418(2008) [3] Gen, M., Cheng, R.: Genetic Algorithms and Engineering Design. Wiley, New york (1997) [4] Dasci, A., Verter, V.: A continuous model for proproduct-distribution system des. Eur. J. Oper. Res. 129, 278–298(2001) [5] Amiri, A.: Designing a distribution network in a supply chain system: formulated and efficient solution procedure. Eur. J. Oper. Res. 171, 567–576(2006) [6] Listes, O., Dekker, R.: A stochastic approach to a case study for product recovery network design. Eur. J. Oper. Res. 160, 268–287(2005) [7] Thomas, D., Griffin, P.: Coordinated supply chain management. Eur. J. Oper. Res. 94, 1–15(1996) [8] Pishvaee, M.S., Farahani, R.Z., Dullaert, W.: A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Comput. Oper. Res. 37, 1100–1112(2010) [9] Altiparmak, F., Gen, M., Lin, L., Paksoy, T.: A genetic algorithm approach for multi-objective potimization of supply chain networks. Comput. Ind. Eng. 51, 197–216(2006) [10] Zhou, G., Min, H., Gen, M.: A genetic algorithm approach to the bi-criteria allocation of customers to warehouse. Int. J. Prod. Econ. 86, 35–45(2003) [11] Du, F., Evans, G.: A bi-objective reverse logistics network analysis for post-sale service. Comput. Oper. Res. 35, 2617–2634(2008) [12] Neto, J.Q.F., Walther, G., Bloemhof, J., Nunen, A.E.E.V., Spengler, T.: From closed-loop to sustainable supply chain: the weee case. Int. J. Prod. Res. 48(15), 4463–4481(2010) [13] Alumur, S.A., Nickel, S., da Gamad, F.S., Verter, V.: Multi-period reverse logistics network design. Eur. J. Oper. Res. 220(1), 67–78(2012) [14] Fleischmann, M., Beullens, P., Bloemhof-ruwaard, J.M., Wassenhove, L.: The impact of product recovery on logistics network design. Prod. Oper. Manag. 10, 156–173(2001) [15] Yeh, W.: A hybrid heuristic algorithm for the multistage supply chain network problem. Int. J. Adv. Manuf. Technol. 26, 675–685(2005) [16] Jayaraman, V., Patterson, R., Rolland, E.: The design of reverse distribution networks: mmodel and solution procedure. Eur. J. Oper. Res. 150, 128–149(2003) [17] Pishvaee, M.S., Kianfar, K., Karimi, B.: Reverse logistics network design simulated annealing. Int. J. Adv. Manuf. Technol. 47(1), 269–281(2010) [18] Chouhan, V.K., Khan, S.H., Hajiaghaei-Keshteli, M., Subramanian, S.: Multi-facility-based improved closed-loop supply chain network for handling uncertain demands. Soft. Comput. 24, 7125–7147(2020) [19] Gumus, D.B., Ozcan, E., Atkin, J.: An analysis of the taguchi method for tuning a memetic algorithm with reduced computational time budget, In: International Symposium on Computer and Information Sciences, (2016) https://doi.org/10.1007/978-3-319-47217-1_2 [20] Alavidoost, M.H., Jafarnejad, A., Babazadeh, H.: A novel fuzzy mathematical model for an integrated supply chain planning using multi-objective evolutionary algorithm. Soft. Comput. 25, 1777–1801(2021) [21] Akbari, M., Molla-Alizadeh-Zavardehi, S., Niroomand, S.: Meta-heuristic approaches for fixed-charge solid transportation problem in two-stage supply chain network. Oper. Res. Int. J. 20, 447–471(2020) [22] Zahraee, S.M., Rohani, J.M., Firouzi, A., Shahpanah, A.: Efficiency improvement of blood supply chain system using taguchi method and dynamic simulation. Proc. Manuf. 2, 1–5(2015) [23] Vinary, V.P., Sridharan, R.: Taguchi method for parameter design in aco algorithm for distribution-allocation in a two-stage supply chain, Int. J. Adv. Manuf. Technol. (2013) [24] Gottlieb, J., Paulmann, L.: Genetic algorithms for the fixed charge transportation problem, In: IEEE World Congress on Evolutionary Computation INN, I.C. (ed.), pp. 330–335(1998) [25] Jo, J.B., Yinzhen, L., Gen, M.: Nonlinear fixed charge transportation problem by spanning tree-based genetic algorithm. Comput. Ind. Eng. 53, 290–298(2007) [26] Behmanesh, E., Pannek, J.: Modeling and random path-based direct encoding for a closed loop supply chain model with flexible delivery paths, In: The Seventh IFAC Conference on Management and Control of Production and Logistics, p. 49(2), 78–83(2016) [27] Wang, H., Hsu, H.: A closed-loop logistic model with a spanning-tree based genetic algorithm. Comput. Oper. Res. 37, 376–389(2010) [28] Behmanesh, E., Pannek, J.: A memetic algorithm with extended random path encoding for a closed-loop supply chain model with flexible delivery. J. Logist. Res. 9(22), 1–12(2016) [29] Michalewicz, Z.: Genetic algorithms + data Structures = evolution Programs. Springer-Verlag, Berlin (1996) [30] Yun, Y., Moon, C., Kim, D.: Hybrid genetic algorithm with adaptive local search scheme for solving multistage-based supply chain problems. Comput. Ind. Eng. 56, 821–838(2009) [31] Hart, W.: Adaptive Global Optimization with Local Search. Ph.D Thesis, University of California, San Diego, CA, (1994) [32] Liu, C., Li, B.: Memetic algorithm with adaprive local search depth for large scale global optimization, In: IEEE Congress on Evolutionary Computation, (2014) [33] Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance. Physica A. 391(6), 2193–2196(2012) [34] Athreya, S., Venkatesh, Y.D.: Application of taguchi method for optimization of process parameters in imroving the surface roughness of lathe facing operation. Int. Refer. J. Eng. Sci. 1(3), 13–19(2012) [35] Daniel, C.: One at a time plans. J. America Atatistical Assoc. 68, 353–360(1973) [36] Zandieh, M., Amiri, M., Vahdani, B., Soltani, R.: A robust parameter design for multi-response problems. J. Comput. Appl. Math. 230, 463–476(2009) [37] Taguchi, G., Konishi, S.: Taguchi Methods, Orthogonal Arrays and Linear Graphs, Tools for Quality American Supplier Institute, American Supplier Institute, https://www.researchgate.net/publication/310478918(1987) [38] Subulan, K., Tasan, A.S.: Taguchi method for analyzing the tactical planning model in a closed-loop supply chain considering remanufacturing option. Int. J. Adv. Manuf. Technol. 66, 251–269(2013) [39] Shula, S., Tiwari, M., Wan, H., Shankar, R.: Optimization of the supply chain network:simulation, taguchi, and psychoclonal algorithm embedded approach. Comput. Ind. Eng. 58, 29–39(2010) [40] Piotrowski, A.P.: Review of differential evolution population size. Swarm Evol. Comput. 32, 1–24(2017) [41] Lee, D., Dong, M.: A heuristic approach to logistics network design for end-of lease computer pproduct recovery. Transp. Res. Part E 44, 455–474(2007) [42] Behmanesh, E., Pannek, J.: The effect of various parameters of solution methomethod on a flexible integrated supply chain model, Mathematical Problems in Engineering. https://doi.org/10.1155/2018/5935268(2018) [43] Hedayat, A.S., Sloane, N.J.A.: Orthogonal Arrays: Theory and Applications. Springer, New York (1999) |