[1] Qian, M., Froes, F.H.:Titanium powder metallurgy:science, technology and applications. Butterworth-Heinemann, Oxford (2015) [2] Zou, L., Liu, X., Xie, H., Mao, X.:High-quality Ti-6Al-4 V alloy powder prepared by plasma rotating electrode process and its processability in hot isostatic pressing. In:Han, Y. (ed.) High Performance Structural Materials. CMC 2017, pp. 61-67. Springer, Singapore (2018) [3] Duriagina, Z., Trostyanchyn, A., Lemishka, I., Skrebtsov, A., Ovchinnikov, O.:The influence of chemical-thermal treatment on granulometric characteristics of titanium sponge powder. Ukr J Mech. Eng. Mater. Sci. 3, 73-80(2017) [4] Duriagina, Z.A., Lemishka, I.A., Trostianchyn, A.M., et al.:The effect of morphology and particlesize distribution of VT20 titanium alloy powders on the mechanical properties of deposited coatings. Powder Metall. Met. Ceram. 57, 697-702(2019) [5] Duryahina, Z.A., Kovbasyuk, T.M., Bespalov, S.A., et al.:Micromechanical and electrophysical properties of Al2O3 nanostructured dielectric coatings on plane heating elements. Mater. Sci. 52, 50-55(2016) [6] Tsmots, I., Teslyuk, V., Teslyuk, T., Ihnatyev, I.:Basic components of neuronetworks with parallel vertical group data real-time processing. In:Shakhovska, N., Stepashko, V. (eds.) Advances in intelligent systems and computing Ⅱ. CSIT 2017. Advances in Intelligent Systems and Computing, vol. 689, pp. 558-576. Springer, Cham (2018) [7] Tkachenko, R., Doroshenko, A., Izonin, I., Tsymbal, Y., Havrysh, B.:Imbalance data classification via neural-like structures of geometric transformations model:local and global approaches. In:Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol. 754, pp. 112-122. Springer, Cham (2019) [8] Duriagina, Z.A., Tkachenko, R.O., Trostianchyn, A.M., Lemishka, I.A., Kovalchuk, A.M., Kulyk, V.V., Kovbasyuk, T.M.:Determination of the best microstructure and titanium alloy powders properties using neural network. J. Achiev. Mater. Manuf. Eng. 1(87), 25-31(2018) [9] Tkachenko, R., Duriagina, Z., Lemishka, I., Izonin, I., Trostianchyn, A.:Development of machine learning method of titanium alloy properties identification in additive technologies. Eastern-Eur J Enterp Technol 3(12), 23-31(2018) [10] Fang, T.T., Murty, K.L.:Grain-size-dependent creep of stainless steel. Mater. Sci. Eng. 61(3), L7-L10(1983) [11] Bennell, J.A., Oliveira, J.F.:A tutorial in irregular shape packing problem. J. Oper. Res. Soc. 60, S93-S105(2009) [12] Stetsyuk, P., Romanova, T., Scheithauer, G.:On the global minimum in a balanced circular packing problem. Optim. Lett. 10, 1347-1360(2016) [13] Torres, R., Marmolejo, J.A., Litvinchev, I.:Binary monkey algorithm for approximate packing noncongruent circles in a rectangular container. Wirel Netw. (2018). https://doi.org/10.1007/s11276-018-1869-y [14] Litvinchev, I., Infante, L., Ozuna, L.:Packing circular-like objects in a rectangular container. Comput. Syst. Sci. Int. 54, 259-267(2015) [15] Martinez, F., Murillo-Suarez, A.:Packing algorithm inspired by gravitational and electromagnetic effects. Wirel Netw. (2019). https://doi.org/10.1007/s11276-019-02011-9 [16] Romanova, T., Pankratov, A., Litvinchev, I.:Packing ellipses in an optimized convex polygon. J. Glob. Optim. (2019). https://doi.org/10.1007/s10898-019-00777-y [17] Sollich, P., Wilding, N.B.:Crystalline phases of polydisperse spheres. Phys. Rev. Lett. 104, 118302(2010) [18] Li, Y., Ji, W.:Stability and convergence analysis of a dynamics-based collective method for random sphere packing. J. Comput. Phys. 250, 373-387(2013) [19] Burtseva, L., Salas, B.V., Romero, R., Werner, F.:Multi-Sized Sphere Packings:Models and Recent Approaches. Otto-von-Guericke-Universität Magdeburg (2015). https://doi.org/10.13140/2.1.4515.6169 [20] Yamada, S., Kanno, J., Miyauchi, M.:Multi-sized sphere packing in containers:optimization formula for obtaining the highest density with two different sized spheres. IPSJ Online Trans 4, 126-133(2011) [21] Sutou, A., Day, Y.:Global optimization approach to unequal sphere packing problems in 3D. J. Optim. Theory Appl. 114, 671-694(2002) [22] Stoyan, Y., Scheithauer, G., Yaskov, G.:Packing unequal spheres into various containers. Cybern. Syst. Anal. 52, 419-426(2016) [23] Kubach, T., Bortfeldt, A., Tilli, T., Gehring, H.:Greedy algorithms for packing unequal spheres into a cuboidal strip or a cuboid. Asia-Pac. J. Oper. Res. 28(6), 739-753(2011) [24] Huang, W.Q., Li, Y., Akeb, H., Li, C.M.:Greedy algorithms for packing unequal circles into a rectangular container. J. Oper. Res. Soc. 56(5), 539-548(2005) [25] Akeb, H.:A look-ahead-based heuristic for packing spheres into a bin:the knapsack case. Procedia Comput. Sci. 65, 652-661(2015) [26] Kallrath, J., Frey, M.M.:Minimal surface convex hulls of spheres. Vietnam J. Math. 46, 883-913(2018) [27] Pintér, J.D., Kampas, F.J., Castillo, I.:Globally optimized packings of non-uniform size spheres in Rd:a computational study. Optimi. Lett. 12(3), 585-613(2018) [28] Hifi, M., Yousef, L.:A local search-based method for sphere packing problems. Eur. J. Oper. Res. 274, 482-500(2019) [29] Kansal, A.R., Torquato, S., Stillinger, F.H.:Computer generation of dense polydisperse sphere packings. J. Chem.Phys. 117(18), 8212-8218(2002) [30] ISO 3310-1. Test sieves-technical requirements and testing-Part 1:test sieves of metal wire cloth/ISO/TC24/SC8 Test sieves, sieving and industrial screens, p. 15(2016) [31] Verguet, A., Messaoudi, C., Marco, S., Donnadieu, P.:An imagej tool for simplified post-treatment of TEM phase contrast images (SPCI). Micron 121, 90-98(2019) [32] Walpole, R.E., Myers, R.H.:Probability and Statistics for Engineers and Scientists. Macmillan Publishing Company, New York (1985) [33] OriginLab. http://www.originlab.com/doc/User-Guide (date of treatment 02.01.19) [34] Wächter, A., Biegler, L.T.:On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25-57(2006) [35] Leao, A.A.S., Toledo, F.M.B., Oliveira, J.F., Carravilla, M.A., Alvarez-Valdés, R.:Irregular packing problems:a review of mathematical models. Euro. J. Oper. Res. 282(3), 803-822(2020) [36] Ma, Y., Chen, Z., Hu, W., Wang, W.:Packing irregular objects in 3D space via hybrid optimization. Comput. Gr Forum 37(5), 49-59(2018) [37] Zhao, C., Jiang, L., Teo, K.L.:Ahybrid chaos firefly algorithm for three-dimensional irregular packing problem. J. Ind. Manag. Optim. 16(1), 409-429(2020) [38] Kovalenko, A.A., Romanova, T.E., Stetsyuk, P.I.:Balance layout problem for 3D-objects:mathematical model and solution methods. Cybern. Syst. Anal. 51, 556-565(2015) [39] Stoyan, Y., Pankratov, A., Romanova, T., Chugay, A.:Optimized object packings using quasiphi-functions. In:Fasano, G., Pintér, J. (eds.) Optimized Packings with Applications. Springer Optimization and its Applications, vol. 105, pp. 265-291. Springer, Cham (2015) [40] Stoyan, Y., et al.:Optimized packings in space engineering applications:Part I. In:Fasano, G., Pintér, J. (eds.) Modeling and Optimization in Space Engineering. Springer optimization and its applications, pp. 395-437. Springer, Cham (2019) [41] Romanova, T., Bennell, J., Stoyan, Y., Pankratov, A.:Packing of concave polyhedra with continuous rotations using nonlinear optimization. Eur. J. Oper. Res. 268, 37-53(2018) [42] Pankratov, A., Romanova, T., Litvinchev, I., Marmolejo-Saucedo, J.A.:An optimized covering spheroids by spheres. Appl. Sci. 10(5), 1846(2020) [43] Romanova, T., Litvinchev, I., Pankratov, A.:Packing ellipsoids in an optimized cylinder. Eur. J. Oper. Res. 285(2), 429-443(2020) [44] Litvinchev, I.:Decomposition-aggregation method for convex programming problems. Optimization 22(1), 47-56(1991) [45] Litvinchev, I.:Refinement of Lagrangian bounds in optimization problems. Comput. Math. Math. Phys. 47, 1101-1107(2007) [46] Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Marmolejo, J.A.:Decomposition algorithm forirregularplacementproblems.In:Vasant,P.,Zelinka,I.,Weber,G.W.(eds.) AdvancesinIntelligent Systems and Computing. Intelligent Computing and Optimization. ICO 2019, vol. 1072, pp. 214-221. Springer, Berlin (2020) [47] Romanowska, J., Dryzek, E., Morgiel, J., Siemek, K., Kolek, Ł., Zaguła-Yavorska, M.:Microstructure and positron lifetimes of zirconium modified aluminide coatings. Arch. Civil Mech. Eng 18(4), 1150-1155(2018) [48] Szala, M., Beer-Lech, K., Gancarczyk, K., Kilic, O., Pȩdrak, P., Özer, A., Skic, A.:Microstructural characterization of Co-Cr-Mo casting dental alloys. Adv. Sci. Technol. Res. J. 11(4), 76-82(2017) [49] Yuan, Y., Liu, L., Deng, W., Li, S.:Random-packing properties of sphero polyhedra. Powder Technol. 351, 186-194(2019) [50] Wei, C., Zhang, H., An, X., Jiang, S.:Influence of particle shape on microstructure and heat transfer characteristics in blast furnace raceway with CFD-DEM approach. Powder Technol. 361, 283-296(2020) |