[1] Charnes, A., Cooper, W.W., Kortanek, K.: A duality theory for convex programs with convex constraints. Bull. Am. Math. Soc. 68, 605–608(1962) [2] Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630(1968) [3] Lopez, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518(2007) [4] Kanzi, N., Nobakhtian, S.: Optimality conditions for non smooth semi-infinite multi-objective programming. Optim. Lett. 8, 1517–1528(2014) [5] Kanzi, N., Nobakhtian, S.: Optimality conditions for non-smooth semi-infinite programming. Optimization 59, 717–727(2010) [6] Mishra, S.K., Jaiswal, M., Hoai An, L.T.: Duality for non-smooth semi-infinite programming problems. Optim. Lett. 6, 261–271(2012) [7] Canovas, M.J., Lopez, M.A., Mordukhovich, B.S., Parra, J.: Variational analysis in semi-infinite and infinite programming, I: stability of linear inequality systems of feasible solutions. SIAM J. Optim. 20, 1504–1526(2010) [8] Canovas, M.J., Lopez, M.A., Mordukhovich, B.S., Parra, J.: Variational analysis in semi-infinite and infinite programming II. SIAM J. Optim. 20, 2788–2806(2010) [9] Hanson, M.A., Mond, B.: Necessary and sufficient conditions in constrained optimization. Math. Program. 37, 51–58(1987) [10] Rueda, N.G., Hanson, M.A.: Optimality criteria in mathematical programming. J. Math. Anal. Appl. 130, 375–385(1988) [11] Kaul, R.N., Suneja, S.K., Srivastava, M.K.: Optimality criteria and duality in multi-objective optimization involving generalized invexity. J. Optim. Theory Appl. 80, 465–482(1994) [12] Jaiswal, M., Mishra, S.K.: Optimality conditions and duality for multi-objective semi-infinite programming problems with generalized (C,α,ρ, d)-convexity. Ann. Univ. Buchar. 6, 83–98(2015) [13] Jaiswal, M., Mishra, S.K., Shamary, B.A.: Optimality conditions and duality for semi-infinite programming involving semilocally type I-preinvex and related functions. Commun. Korean Math. Soc. 27(2), 411–423(2012) [14] Soleimani, M., Jahanshahloo, G.R.: Non-smooth multi-objective optimization using limiting subdifferentials. J. Math. Anal. Appl. 328, 281–286(2007) [15] Mishra, S.K., Jaiswal, M., Hoai An, L.T.: Optimality conditions and duality for non differentiable multi-objective semi-infinite programming problems with generalized (C,α,ρ, d)-convexity. J. Syst. Sci. Complex. 28, 47–59(2015) [16] Hanson, M.A.: Bounds for functionally convex optimal control problems. J. Math. Anal. Appl. 8, 84–89(1964) [17] Bhatia, D., Mehra, A.: Optimality conditions and duality for multi-objective variational problems with generalized B-invexity. J. Math. Anal. Appl. 234, 341–360(1999) [18] Nahak, C., Behara, N.: Optimality conditions and duality for multi-objective variational problems with generalized ρ, -(η,θ)-B-Type-I functions. J. Control Sci. Eng. pp. 11(2011). https://doi.org/10.1155/2011/497376 [19] Sharma, B., Kumar, P.: Necessary optimality conditions for multi-objective semi-infinite variational problem. Am. J. Oper. Res. 6, 36–43(2016) [20] Mititelu, S., Stancu-Minastan, I.M.: Efficiency and duality for multi-objective fractional variational problems with ρ, b-quasiinvexity. Yugosl. J. Oper. Res. 19, 85–99(2009) [21] Bector, C.R., Husain, I.: Duality for multi-objective variational problems. J. Math. Anal. Appl. 166, 214–229(1992) |