[1] |
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.:Network Flows:Theory, Algorithms, and Applications. Prentice Hall, New Jersey (1993)
|
[2] |
Ahuja, R.K., Orlin, J.B.:Inverse optimization. Oper. Res. 49, 771-783(2001)
|
[3] |
Aman, M., Tayyebi, J.:Capacity inverse minimum cost flow problem under the weighted Hamming distances. Iran. J. Oper. Res. 5, 12-25(2014)
|
[4] |
Guler, C., Hamacher, H.W.:Capacity inverse minimum cost flow problem. J. Comb. Optim. 19, 43-59(2010)
|
[5] |
Heuberger, C.:Inverse combinatorial optimization:a survey on problems, methods, and results. J. Comb. Optim. 8, 329-361(2004)
|
[6] |
Hochbaumand, D.S., Naor, J.:Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM. J. Comput. 23, 1179-1192(1994)
|
[7] |
Jiang, Y., Liu, L., Wuc, B., Yao, E.:Inverse minimum cost flow problems under the weighted Hamming distance. Eur. J. Oper. Res. 207, 50-54(2010)
|
[8] |
Liu, L., Yao, E.:Capacity inverse minimum cost flow problems under the weighted Hamming distance. Optim. Lett. 10, 1257-1268(2016)
|
[9] |
Tayyebi, J., Aman, M.:On inverse linear programming problems under the bottleneck-type weighted Hamming distance. Discr. Appl. Math (2016). https://doi.org/10.1016/j.dam.2015.12.017
|
[10] |
Zhang, J., Liu, Z.:Calculating some inverse linear programming problem. J. Comput. Appl. Math. 72, 261-273(1996)
|