[1] Kolda, T.G., Bader, B.W.:Tensor decompositions and applications. Siam Rev. 51(3), 455-500(2009)
[2] Anandkumar, A., Ge, R., Hsu, D.J., Kakade, S.M., Telgarsky, M.:Tensor decompositions for learning latent variable models. J. Mach. Learn. Res. 15(1), 2773-2832(2014)
[3] McCullagh, P.:Tensor methods in Statistics. Chapman and Hall, London (1987)
[4] Batselier, K., Liu, H., Wong, N.:A constructive algorithm for decomposing a tensor into a finite sum of orthonormal rank-1 terms. SIAM J. Matrix Anal. Appl. 36(3), 1315-1337(2015)
[5] Kolda, T.G.:Orthogonal tensor decompositions. SIAM J. Matrix Anal. Appl. 23(1), 243-255(2000)
[6] Robeva, E.:Orthogonal decomposition of symmetric tensors. SIAM J. Matrix Anal. Appl. 37(1), 86-102(2016)
[7] Wang, L., Chu, M., Yu, B.:Orthogonal low rank tensor approximation:alternating least squares method and its global convergence. SIAM J. Matrix Anal. Appl. 36(1), 1-19(2015)
[8] Kolda, T.G., Bader, B.W., Kenny, J.:Higher-order web link analysis using multilinear algebra. In:IEEE International Conference on Data Mining, IEEE Computer Society, pp. 242-249(2005)
[9] Wang, Y., Qi, L.:On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors. Numer Linear Algebra Appl. 14(6), 503-519(2007)
[10] Zhang, T., Golub, G.H.:Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23(2), 534-550(2006)
[11] Mu, C., Hsu, D., Goldfarb, D.:Successive rank-one approximations for nearly orthogonally decomposable symmetric tensors. SIAM J. Matrix Anal. Appl. 36(4), 1638-1659(2015)
[12] Kolda, T.G.:Symmetric Orthogonal Tensor Decomposition is Trivial (2015). arXiv:1503.01375
[13] Aittomaki, T., Koivunen, V.:Beampattern optimization by minimization of quartic polynomial. In:Proceedings of 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp. 437-440(2009)
[14] Hilling, J.J., Sudbery, A.:The geometric measure of multipartite entanglement and the singular values of a hypermatrix. J. Math. Phys. 51(7), 072102(2010)
[15] Josz, C.:Application of Polynomial Optimization to Electricity Transmission Networks. Ph.D. Dissertation, Université Pierre et Marie Curie, Paris (2016)
[16] Boralevi, A., Draisma, J., Horobet, E., Robeva, E.:Orthogonal and unitary tensor decomposition from an algebraic perspective (2015). arXiv:1512.08031
[17] Jiang, B., Li, Z., Zhang, S.:Characterizing real-valued multivariate complex polynomials and their symmetric tensor representations. SIAM J. Matrix Anal. Appl. 37(1), 381-408(2016)
[18] Mu, C., Hsu, D., Goldfarb, D.:Greedy approaches to symmetric orthogonal tensor decomposition. SIAM J. Matrix Anal. Appl. 38(4), 1210-1226(2017) |