[1] Adams, R.A., Fournier, J.J.: Sobolev Spaces, 2nd edn. Academic Press, Cambridge, MA (2003) [2] Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithm and Analysis. Springer, NY (2007) [3] Broadie, M., Du, Y., Moallemi, C.C.: Risk estimation via regression. Oper. Res. 63(5), 1077-1097(2015) [4] Blanchard, G., Mücke, N.: Optimal rates for regularization of statistical inverse learning problems. Foundations of Computational Mathematics 18(4), 971-1013(2018) [5] Barton, R.R., Nelson, B.L., Xie, W.: Quantifying input uncertainty via simulation confidence intervals. INFORMS journal on computing 26(1), 74-87(2014) [6] Brauchart, J.S., Reznikov, A.B., Saff, E.B., Sloan, I.H., Wang, Y.G., Womersley, R.S.: Random point sets on the sphere-hole radii, covering, and separation. Experimental Mathematics 27(1), 62-81(2018) [7] Burt, D., Rasmussen, C.E., Van Der Wilk, M.: Rates of convergence for sparse variational gaussian process regression. In: International Conference on Machine Learning, pp. 862-871(2019). PMLR [8] Birman, M.S., Solomjak, M.Z.: Piecewise-polynomial approximations of functions of the classes. Mathematics of the USSR-Sbornik 2(3), 295(1967). https://doi.org/10.1070/SM1967v002n03ABEH002343 [9] Chérief-Abdellatif, B.-E.: Convergence rates of variational inference in sparse deep learning. In: International Conference on Machine Learning, pp. 1831-1842(2020). PMLR [10] Cheng, H.-F., Liu, X., Zhang, K.: Constructing confidence intervals for nested simulation. Naval Research Logistics (NRL) 69(8), 1138-1149(2022) [11] Cheng, H.-F., Zhang, K.: Non-nested estimators for the central moments of a conditional expectation and their convergence properties. Operations Research Letters 49(5), 625-632(2021) [12] Davies, A.J.: Effective implementation of gaussian process regression for machine learning. PhD thesis, University of Cambridge (2015) [13] Dicker, L.H., Foster, D.P., Hsu, D.: Kernel ridge vs. principal component regression: Minimax bounds and the qualification of regularization operators. Electronic Journal of Statistics 11(1), 1022-1047(2017) [14] Ding, L., Hu, T., Jiang, J., Li, D., Wang, W., Yao, Y.: Random smoothing regularization in kernel gradient descent learning. Journal of Machine Learning Research 25(284), 1-88(2024) [15] Donoho, D.L.: De-noising by soft-thresholding. IEEE transactions on information theory 41(3), 613- 627(1995) [16] Ding, L., Tuo, R., Shahrampour, S.: Generalization guarantees for sparse kernel approximation with entropic optimal features. In: International Conference on Machine Learning, pp. 2545-2555(2020). PMLR [17] Evans, L.C.: Partial Differential Equations, vol. 19. American Mathematical Society, Providence (2022) [18] Fu, M.C., Hu, J.-Q.: Conditional Monte Carlo: Gradient Estimation and Optimization Applications. Springer, NY (1997) [19] Fu, M.C., Hong, L.J., Hu, J.-Q.: Conditional Monte Carlo estimation of quantile sensitivities. Manag. Sci. 55(12), 2019-2027(2009) [20] Feng, M.B., Song, E.: Optimal nested simulation experiment design via likelihood ratio method. arXiv:2008.13087(2020) [21] Gouk, H., Frank, E., Pfahringer, B., Cree, M.J.: Regularisation of neural networks by enforcing lipschitz continuity. Machine Learning 110, 393-416(2021) [22] Gordy, M.B., Juneja, S.: Nested simulation in portfolio risk measurement. Manag. Sci. 56(10), 1833- 1848(2010) [23] Glasserman, P.: Monte Carlo Methods in Financial Engineering, 1st edn. Springer, New York (2003) [24] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27(2014) [25] Guntuboyina, A., Sen, B.: Nonparametric shape-restricted regression. Statistical Science 33(4), 568- 594(2018) [26] Hastie, T.: Ridge regularization: An essential concept in data science. Technometrics 62(4), 426-433(2020) [27] Haug, E.G.: The Complete Guide to Option Pricing Formulas. McGraw-Hill, New York (2007) [28] Hong, L.J., Juneja, S.: Estimating the mean of a non-linear function of conditional expectation. In: Proceedings of the 2009 Winter Simulation Conference (WSC), pp. 1223-1236(2009). IEEE [29] Hong, L.J., Juneja, S., Liu, G.: Kernel smoothing for nested estimation with application to portfolio risk measurement. Operations Research 65(3), 657-673(2017) [30] Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: Convergence and generalization in neural networks. Advances in neural information processing systems 31(2018) [31] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980(2014) [32] Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B.K.: Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences. arXiv: 1807.02582(2018) [33] Kohler, M., Krzy· zak, A., Walk, H.: Optimal global rates of convergence for nonparametric regression with unbounded data. Journal of Statistical Planning and Inference 139(4), 1286-1296(2009) [34] Koltchinskii, V.: Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems: École D’Été de Probabilités de Saint-Flour XXXVIII-2008 vol. 2033. Springer, New York (2011) [35] Kuchibhotla, A.K., Patra, R.K.: On least squares estimation under heteroscedastic and heavy-tailed errors. The Annals of Statistics 50(1), 277-302(2022) [36] Kur, G., Rakhlin, A.: On the minimal error of empirical risk minimization. In: Conference on Learning Theory, pp. 2849-2852(2021). PMLR [37] Kühn, T.: Covering numbers of gaussian reproducing kernel hilbert spaces. Journal of Complexity 27(5), 489-499(2011) [38] Lan, H., Nelson, B.L., Staum, J.: A confidence interval procedure for expected shortfall risk measurement via two-level simulation. Operations Research 58(5), 1481-1490(2010) [39] Liu, M., Staum, J.: Stochastic kriging for efficient nested simulation of expected shortfall. Journal of Risk 12(3), 3(2010) [40] Lin, X.S., Yang, S.: Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach. Insurance: Mathematics and Economics 91, 85-103(2020) [41] Liu, X., Yan, X., Zhang, K.: Kernel quantile estimators for nested simulation with application to portfolio value-at-risk measurement. European Journal of Operational Research 312(3), 1168-1177(2024) [42] Liu, T., Zhou, E.: Online quantification of input model uncertainty by two-layer importance sampling. arXiv:1912.11172(2019) [43] Liang, G., Zhang, K., Luo, J.: A fast method for nested estimation. INFORMS Journal on Computing (2024) [44] Rakhlin, A., Spidharan, K., Tsybakov, A.B.: Empirical entropy, minimax regret and minimax risk. Bernoulli, 789-824(2017) [45] Suzuki, T.: Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces: optimal rate and curse of dimensionality. In: Proceedings of the Nternational Conference on Learning Representations (2019) [46] Geer, S.: Empirical Processes in M-Estimation. Cambridge University Press, Cambridge (2000) [47] Geer, S.: On the uniform convergence of empirical norms and inner products, with application to causal inference. Electronic Journal of Statistics 8(1), 543-574(2014) [48] Vaart, A.W.: Asymptotic Statistics. Cambridge University Press, Cambridge (1998) [49] Van Der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes: with Applications to Statistics. Springer, New York (1997) [50] Wainwright, M.J.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge University Press, Cambridge (2019) [51] Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2004) [52] Wu, Z.-M., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA journal of Numerical Analysis 13(1), 13-27(1993) [53] Wang, W., Wang, Y., Zhang, X.: Smooth nested simulation: Bridging cubic and square root convergence rates in high dimensions. Management Science (2024) [54] Xie, W., Nelson, B.L., Barton, R.R.: A bayesian framework for quantifying uncertainty in stochastic simulation. Operations Research 62(6), 1439-1452(2014) [55] Yao, Y., Rosasco, L., Caponnetto, A.: On early stopping in gradient descent learning. Constructive Approximation 26(2), 289-315(2007) [56] Zhang, B., Cole, D.A., Gramacy, R.B.: Distance-distributed design for gaussian process surrogates. Technometrics 63(1), 40-52(2021) [57] Zhang, K., Feng, B.M., Liu, G., Wang, S.: Sample recycling for nested simulation with application in portfolio risk measurement. arXiv:2203.15929(2022) [58] Zhang, K., Liu, G., Wang, S.: Bootstrap-based budget allocation for nested simulation. Operations Research 70(2), 1128-1142(2022) [59] Zhang, K., Liu, G., Wang, S.: Technical note-Bootstrap-based budget allocation for nested simulation. Operations Research 70(2), 1128-1142(2022) [60] Zhu, H., Liu, T., Zhou, E.: Risk quantification in stochastic simulation under input uncertainty. ACM Trans. Model. Comput. Simul. 30(1), 1(2020) |