[1] Bondareva, O.N.: Some applications of linear programming methods to the theory of cooperative games. Probl. Kibem. 10, 119-139 (1963) [2] Shapley, L.S.: On balanced sets and cores. Naval Res. Log. Q. 14, 453-460 (1967) [3] Scarf, H.E.: The core of an \begin{document}$ N $\end{document}-person game. Econometrica 35, 50-69 (1967) [4] Scarf, H.E.: On the existence of a cooperative solution for a general class of \begin{document}$ n $\end{document}-person games. J. Econ. Theory 3, 169-181 (1971) [5] Kajii, A.: A generalization of Scarf’s theorem without transitivity or completeness. J. Econ. Theory 56, 194-205 (1992) [6] Askoura, Y.: The weak-core of a game in normal form with a continuum of players. J. Math. Econ. 47, 43-47 (2011) [7] Askoura, Y., Sbihi, M., Tikobaini, H.: The ex ante \begin{document}$ \alpha $\end{document}-core for normal form games with uncertainty. J. Math. Econ. 49, 157-162 (2013) [8] Noguchi, M.: Cooperative equilibria of finite games with incomplete information. J. Math. Econ. 55, 4-10 (2014) [9] Uyanik, M.: On the nonemptiness of the \begin{document}$ \alpha $\end{document}-core of discontinuous games: transferable and nontransferable utilities. J. Econ. Theory 158, 213-231 (2015) [10] Yang, Z.: Essential stability of \begin{document}$ \alpha $\end{document}-core. Int. J. Game Theory 46(1), 13-28 (2017) [11] Yang, Z., Song, Q.P.: A weak \begin{document}$ \alpha $\end{document}-core existence theorem of generalized games with infinitely many players and pseudo-utilities. Math. Soc. Sci. 116, 40-46 (2022) [12] Al-Najjar, N.: Strategically stable equilibria in games with infinitely many pure strategies. Math. Soc. Sci. 29, 151-164 (1995) [13] Zhou, Y.H., Yu, J., Xiang, S.W.: Essential stability in games with infinitely many pure strategies. Int. J. Game Theory 35, 493-503 (2007) [14] Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer, Berlin (2006) [15] Fort, M.K., Jr.: Points of continuity of semicontinuous functions. Publ. Math. Debrecen 2, 100-102 (1951) [16] Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968) |