[1] Anandalingam, G., Friesz, T.L.: Hierarchical optimization: an introduction. Ann. Oper. Res. 34(1), 1-11 (1992) [2] Bard, J.F.: Practical Bilevel Optimization. Kluwer, Boston (1998) [3] Sana, S.S.: A production-inventory model of imperfect quality products in a three-layer supply chain. Decis. Support Syst. 50(2), 539-547 (2011) [4] Xu, X., Meng, Z., Shen, R.: A tri-level programming model based on conditional value-at-risk for three-stage supply chain managemen. Comput. Indus. Eng. 66(2), 470-475 (2013) [5] Luka, Z., Ori, K., Rosenzweig, V.V.: Production planning problem with sequence dependent setups as a bilevel programming problem. Eur. J. Oper. Res. 187(3), 1504-1512 (2008) [6] Calvete, H.I., Gale, C., Oliveros, M.J.: Bilevel model for production distribution planning solved by using ant colony optimization. Comput. Operat. Res. 38(1), 320-327 (2011) [7] Chiou, S.W.: Bilevel programming for the continuous transport network design problem. Transp. Res. Part B 39(4), 361-383 (2005) [8] Feng, C., Wen, C.: A fuzzy bi-level and multi-objective model to control traffic flow into the disaster area post earthquake. J. Eastern Asia Soc. Transp. Stud. 6, 4253-4268 (2005) [9] Ke, G.Y., Bookbinder, J.H.: Coordinating the discount policies for retailer, wholesaler, and less-than-truckload carrier under price-sensitive demand: a tri-level optimization approach. Int. J. Prod. Econ. 196, 82-100 (2018) [10] Safaei, A.S., Farsad, S., Paydar, M.M.: Robust bi-level optimization of relief logistics operations. Appl. Math. Model. 56, 359-380 (2017) [11] Bard, J.F.: Optimality conditions for the bilevel programming problem. Naval Res. Logistics Quarter. 31, 13-26 (1984) [12] Omar, B.: Bilevel linear programming. Comput. Operat. Res. 20, 485-501 (1993) [13] Cao, D., Leung, L.C.: A partial cooperation model for non-unique linear two-level decision problems. Eur. J. Oper. Res. 140(1), 134-141 (2007) [14] Chiou, S.W.: A bi-level programming for logistics network design with system-optimized flows. Inf. Sci. 179(14), 2434-2441 (2009) [15] Alguacil, N., Delgadillo, A., Arroyo, J.M.: A trilevel programming approach for electric grid defense planning. Comput. Operat. Res. 41, 282-290 (2014) [16] Li, G., Wan, Z., Chen, J.W., Zhao, X.: Optimality conditions for pessimistic trilevel optimization problem with middle-level problem being pessimistic. J. Nonlinear Sci. Appl. 9, 3864-3878 (2016) [17] Li, G., Wan, Z., Chen, J.W., Zhao, X.: Necessary optimality condition for trilevel optimization problem. J. Indus. Manage. Optimiz. 16(1), 55-70 (2020) [18] Faisca, N.P., Saraiva, P.M., Rustem, B., Pistikopoulos, E.N.: A multi- parametric programming approach for multilevel hierarchical and decentralised optimisation problems. CMS 6(4), 377-397 (2009) [19] Zhao, X., Zheng, Y., Wan, Z.: Interactive intuitionistic fuzzy methods for multilevel programming problems. Expert Syst. Appl. 72, 258-268 (2016) [20] Bard, J.F.: An investigation of the linear three level programming problem. IEEE Trans. Syst. Man Cybern. 14(5), 711-717 (1984) [21] Zhang, G.Q., Lu, J., Montero, J., Yi, Z.: Model, solution concept, and kth-best algorithm for linear trilevel programming. Inf. Sci. 180(4), 481-492 (2010) [22] Lv, Y., Jiang, J.: A relaxation solving approach for the linear trilevel programming problem. Comput. Appl. Math. 40, 226 (2021) [23] Anandalingam, G., White, D.J.: A solution method for the linear static stackelberg problem using penalty functions. IEEE Trans. Autom. Control 35(10), 1170-1173 (1990) [24] Shih, H.S., Lai, Y.J., Lee, E.S.: Fuzzy approach for multi-level programming problems. Comput. Operat. Res. 23(1), 73-91 (1996) |