[1] Misra, A.K., Tripathi, A.: An optimal control model for cloud seeding in a deterministic and stochastic environment. Optim. Control Appl. Methods 41, 2166-2189 (2020) [2] Nabi, S., Grover, P., Caulfield, C.P.: Nonlinear optimal control strategies for buoyancy-driven flows in the built environment. Comput. Fluids 194, 104313 (2019) [3] Jensen, J.H.M., Mller, F.S., Srensen, J.J., Sherson, J.F.: Achieving fast high-fidelity optimal control of many-body quantum dynamics. Phys. Rev. A 104, 052210 (2021) [4] Zhang, H.W., Kuang, Z.Y., Puri, S., Miller, O.D.: Conservation-law-based global bounds to quantum optimal control. Phys. Rev. Lett. 127, 110506 (2021) [5] Hu, B., Tamba, T.A.: Optimal codesign of industrial networked control systems with state-dependent correlated fading channels. Int. J. Robust Nonlinear Control 29, 4472-4493 (2019) [6] Li, L.L., Ding, S.X., Zhang, Y., Yang, Y.: Optimal fault detection design via iterative estimation methods for industrial control systems. J. Frankl. Inst. 353, 359-377 (2016) [7] Blanchard, E.A., Loxton, R., Rehbock, V.: A computational algorithm for a class of non-smooth optimal control problems arising in aquaculture operations. Appl. Math. Comput. 219, 8738-8746 (2013) [8] Caillau, J.B., Cerf, M., Sassi, A., Trélat, E., Zidani, H.: Solving chance constrained optimal control problems in aerospace via kernel density estimation. Optim. Control Appl. Methods 39, 1833-1858 (2018) [9] Trélat, E.: Optimal control and applications to aerospace: Some results and challenges. J. Optim. Theory Appl. 154, 713-758 (2012) [10] Lin, Q., Loxton, R., Teo, K.L.: The control parameterization method for nonlinear optimal control: a survey. J. Ind. Manag. Optim. 10, 275-309 (2014) [11] Lee, H.W.J., Teo, K.L., Rehbock, V., Jennings, L.S.: Control parametrization enhancing technique for time optimal control problems. Dyn. Syst. Appl. 6, 243-261 (1997) [12] Lee, H.W.J., Teo, K.L., Cai, X.Q.: An optimal control approach to nonlinear mixed integer programming problems. Comput. Math. Appl. 36, 87-105 (1998) [13] Lin, Q., Loxton, R., Teo, K.L., Wu, Y.H.: A new computational method for optimizing nonlinear impulsive systems. Dyn. Contin. Discrete Impuls. Syst.-Ser. B: Appl. Algorithms 1, 59-76 (2011) [14] Siburian, A., Rehbock, V.: Numerical procedure for solving a class of singular optimal control problems. Optim. Methods Softw. 19, 413-426 (2004) [15] Guo, X., Ren, H.: A switching control strategy based on switching system model of three-phase vsr under unbalanced grid conditions. IEEE Trans. Ind. Electron. 68, 5799-5809 (2021) [16] Jin, J.F., Ramirez, J.P., Wee, S.G., Lee, D.H., Kim, Y.G., Gans, N.: A switched-system approach to formation control and heading consensus for multi-robot systems. Intel. Serv. Robot. 11, 207-224 (2018) [17] Zhu, X., Yu, C.J., Teo, K.L.: A new switching time optimization technique for multi-switching systems. J. Ind. Manag. Optim. 19, 2838-2854 (2023) [18] Zhu, X., Yu, C.J., Teo, K.L.: Sequential adaptive switching time optimization technique for optimal control problems. Automatica 146, 110565 (2022) [19] Kaya, C.Y., Noakes, J.L.: Computational method for time-optimal switching control. J. Optim. Theory Appl. 117, 69-92 (2003) [20] Loxton, R., Teo, K.L., Rehbock, V.: Optimal control problems with multiple characteristic time points in the objective and constraints. Automatica 44, 2923-2929 (2008) [21] Goh, C.J., Teo, K.L.: Control parametrization: a unified approach to optimal control problems with general constraints. Automatica 24, 3-18 (1988) [22] Teo, K.L.: A unified computational approach to optimal control problems, pp. 2763-2774. De Gruyter (1996) [23] Teo, K.L., Li, B., Yu, C.J., Rehbock, V.: Applied and Computational Optimal Control: A Control Parametrization Approach. Springer, Cham (2021) [24] Ahmed, N.U.: Elements of Finite Dimensional Systems and Control Theory. Wiley, New York (1988) [25] Ahmed, N.U.: Dynamic Systems and Control with Applications. World Scientific, Singapore (2006) [26] Loxton, R., Lin, Q., Teo, K.L.: Switching time optimization for nonlinear switched systems: direct optimization and the time-scaling transformation. Pac. J. Optim. 10, 537-560 (2014) [27] Ma, C.F.: Optimization Method and its Matlab Program Design. Science Press, Beijing (2010) [28] Yang, F., Teo, K.L., Loxton, R., Rehbock, V., Li, B., Yu, C.J., Jennings, L.: Visual miser: An efficient user-friendly visual program for solving optimal control problems. J. Ind. Manag. Optim. 12, 781-810 (2016) [29] Banihashemi, N., Kaya, C.Y.: Inexact restoration for Euler discretization of box-constrained optimal control problems. J. Optim. Theory Appl. 156, 726-760 (2013) [30] Liu, L.X., Hong, M.Q., Gu, X.T., Ding, M., Guo, Y.: Fixed-time anti-saturation compensators based impedance control with finite-time convergence for a free-flying flexible-joint space robot. Nonlinear Dyn. 109, 1671-1691 (2022) [31] Li, M.W., Peng, H.J.: Solutions of nonlinear constrained optimal control problems using quasilinearization and variational pseudospectral methods. ISA Trans. 62, 177-192 (2016) |