[1] Amahroq, T., Gadhi, N.: On the regularity condition for vector programming problems. J. Global Optim. 21, 435-443(2001) [2] Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) [3] Jeyakumar, V., Luc, D.T.: Nonsmooth calculus, minimality, and monotonicity of convexificators. J. Optim. Theory Appl. 101, 599-621(1999) [4] Mordukhovich, B.S., Shao, Y.: On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 2, 211-227(1995) [5] Su, T.V., Hang, D.D., Dieu, N.C.: Optimality conditions and duality in terms of convexificators for multiobjective bilevel programming problem with equilibrium constraints. Comput. Appl. Math. 40, Article number: 37(2021) [6] Tung, L.T.: Karush-Kuhn-Tucker optimality conditions and duality for multiobjective programming with vanishing constraints. Ann. Oper. Res. 311, 1307-1334(2022) [7] Schaible, S.: A survey of fractional programming. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics. Academic Press, New York (1981) [8] Michel, P.P., Penot, J.-P.: Calcul sous-différentiel pour des fonctions lipschitziennes et nonlipschitziennes. C. R. Math. Acad. Sci. 12, 269-272(1984) [9] Demyanov, V.F., Jeyakumar, V.: Hunting for a smaller convex subdifferential. J. Global Optim. 10, 305-326(1997) [10] Dutta, J., Chandra, S.: Convexificators, generalized convexity, and optimality conditions. J. Optim. Theory Appl. 113, 41-64(2002) [11] Babahadda, H., Gadhi, N.: Necessary optimality conditions for bilevel optimization problems using convexificators. J. Global Optim. 34, 535-549(2006) [12] Hejazi, M.A., Movahedian, N., Nobakhtian, S.: Multiobjective problems: enhanced necessary conditions and new constraint qualifications via convexificators. Numer. Funct. Anal. Optim. 39, 11-37(2018) [13] Hejazi, M.A., Nobakhtian, S.: Optimality conditions for multiobjective fractional programming, via convexificators. J. Ind. Manag. Optim. 16, 623-631(2020) [14] Kabgani, A., Soleimani-damaneh,M.: Characterization of(weakly/properly/robust) efficient solutions in nonsmooth semiinfinite multiobjective optimization using convexificators. Optimization 67, 217- 235(2017) [15] Li, X.F., Zhang, J.Z.: Necessary optimality conditions in terms of convexificators in Lipschitz optimization. J. Optim. Theory Appl. 131, 429-452(2006) [16] Canovas, M.J., Lopez, M.A., Mordukhovich, B.S., Parra, J.: Variational analysis in semi-infinite and finite programming, I: stability of linear inequality systems of feasible solutions. SIAM J. Optim. 20, 1504-1526(2009) [17] Chuong, T.D., Tinh, C.T.: Conic linear programming duals for classes of quadratic semi-infinite programs with applications. J. Optim. Theory Appl. 194, 570-596(2022) [18] Gadhi, N.A.: Necessary optimality conditions for a nonsmooth semi-infinite programming problem. J. Global Optim. 74, 161-168(2019) [19] Kanzi, N., Soleimani-damaneh, M.: Slater CQ, optimality and duality for quasiconvex semi-infinite optimization problems. J. Math. Anal. Appl. 434, 638-651(2016) [20] Lopez, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491-518(2007) [21] Singh, D., Dar, B.A., Kim, D.S.: KKT optimality conditions in interval-valued multiobjective programming with generalized differentiable functions. Eur. J. Oper. Res. 254, 29-39(2016) [22] Bhurjee, A.K., Panda, G.: Sufficient optimality conditions and duality theory for interval optimization problem. Ann. Oper. Res. 243, 335-348(2016) [23] Chalco-Cano, Y., Lodwick, W.A., Rufian-Lizana, A.: Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative. Fuzzy Optim. Decis. Making 12, 305-322(2013) [24] Gadhi, N., Ichatouhane, A.: Comments on Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming. RAIRO Oper. Res. 55, 719-721(2021) [25] Su, T.V., Hang, D.D.: Optimality conditions and duality theoremsfor nonsmooth semi-infinite intervalvalued mathematical programs with vanishing constraints. Comput. Appl. Math. 41, Article number: 422(2022) [26] Wu, H.-C.: On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338, 299-316(2008) [27] Wu, H.-C.: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with intervalvalued objective function. Eur. J. Oper. Res. 176, 46-59(2007) [28] Debnath, I.P., Gupta, S.K.: Necessary and sufficient optimality conditions for fractional intervalvalued optimization problems. In: Deep, K., Jain, M., Salhi, S. (eds.) Decision Science in Action. Asset Analytics. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0860-4_12 [29] Guo, Y., Ye, G., Liu, W., Zhao, D., Treanta, S.: Optimality conditions and duality for a class of generalized convex interval-valued optimization problems. Mathematics 9(22), 2979(2021). https://doi.org/10.3390/math9222979 [30] Osuna-Gómez, R., Hernández-Jiménez, B., Chalco-Cano, Y., Ruiz-Garzón, G.: New efficiency conditions for multiobjective interval-valued programming problems. Inf. Sci. 420, 235-248(2017) [31] Tung, L.T.: Karush-Kuhn-Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions. J. Appl. Math. Comput. 62, 67-91(2020) [32] Guo, Y., Ye, G., Zhao, D., Liu, W.: gH-symmetrically derivative of interval-valued functions and applications in interval-valued optimization. Symmetry 11(1203), 01-10(2019) [33] Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998) [34] Ewing, G.M.: Sufficient conditions for global minima of suitably convex functionals from variational and control theory. SIAM Rev. 19, 202-220(1977) [35] Kaur, S.: Theoretical studies in mathematical programming [PhD thesis]. University of Delhi (1983) [36] Kanzi, N.: Necessary optimality conditions for nonsmooth semi-infinite programming problems. J. Global Optim. 49, 713-725(2011) [37] Li, W., Nahak, C., Singer, I.: Constraint qualifications for semi-infinite systems of convex inequalities. SIAM J. Optim. 11, 31-52(2000) [38] Li, C., Ng, K.F., Pong, T.K.: Constraint qualifications for convex inequality systems with applications in constrained optimization. SIAM J. Optim. 19, 163-187(2008) [39] Ansari Ardali, A., Movahedian, N., Nobakhtian, S.: Optimality conditions for nonsmooth mathematical programs with equilibrium constraints, using convexificators. Optimization 56, 67-85(2016) [40] Kanzi, N., Nobakhtian, S.: Optimality conditions for nonsmooth semi-infinite multiobjective programming. Optim. Lett. 8, 1517-1528(2014) [41] Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) [42] Hiriart-Urruty, J.B., Lemarechal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001) [43] Gadhi, N.: Comments on a note on the paper optimality conditions for optimistic bilevel programming problem using convexificators. J. Optim. Theory Appl. 189, 938-943(2021) [44] Stefanini, L., Bede, B.: Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. 71, 1311-1328(2009) |