[1] Chen, G.Y., Huang, X.X., Yang, X.Q.: Vector Optimization: Set-valued and Variational Analysis. Lecture Notes in Econom. and Math. Systems, vol. 541. Springer-Verlag, Berlin (2005) [2] Gerth (Tammer), C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl 67(2), 297-320(1990) [3] Jahn, J.: Vector Optimization. Theory, Applications, and Extensions, 2nd ed. Springer, Berlin (2011) [4] Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989) [5] Miglierina, E., Molho, E.: Scalarization and stability in vector optimization. J. Optim. Theory Appl. 114(3), 657-670(2002) [6] Araya, Y.: Four types of nonlinear scalarizations and some applications in set optimization. Nonlinear Anal. 75(9), 3821-3835(2012) [7] Gutiérrez, C., Jiménez, B., Miglierina, E., Molho, E.: Scalarization in set optimization with solid and nonsolid ordering cones. J. Glob. Optim. 61(3), 525-552(2015) [8] Xu, Y.D., Li, S.J.: A new nonlinear scalarization function and applications. Optimization 65(1), 207- 231(2016) [9] Khushboo, Lalitha, C.S.: Scalarizations for a set optimization problem using generalized oriented distance function. Positivity 23(5), 1195-1213(2019) [10] Jiménez, B., Novo, V., Vílchez, A.: Six set scalarizations based on the oriented distance: properties and application to set optimization. Optimization 69(3), 437-470(2020) [11] Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325(1), 1-18(2007) [12] Han, Y., Huang, N.J.: Continuity and convexity of a nonlinear scalarizing function in set optimization problems with applications. J. Optim. Theory Appl. 177(3), 679-695(2018) [13] Han, Y.: Nonlinear scalarizing functions in set optimization problems. Optimization 68(9), 1685-1718(2019) [14] Han, Y.: Connectedness of weak minimal solution set for set optimization problems. Oper. Res. Lett. 48(6), 820-826(2020) [15] Han, Y.: Some characterizations of a nonlinear scalarizing function via oriented distance function. Optimization (2021). https://doi.org/10.1080/02331934.2021.1969392 [16] Han, Y.: Connectedness of the approximate solution sets for set optimization problems. Optimization (2022). https://doi.org/10.1080/02331934.2021.1969393 [17] Georgiev, P.G., Tanaka, T.: Fan’s inequality for set-valued maps. Nonlinear Anal. 47(1), 607-618(2001) [18] Georgiev, P.G., Tanaka, T.: Minimax theorems for vector-valued multifunctions. Kyoto Univ. Res. Inf. Repos. 1187, 155-164(2001) [19] Huang, X.X.: Extended and strongly extended well-posedness properties of set-valued optimization problems. Math. Methods Oper. Res. 53(1), 101-116(2001) [20] Hamel, A.H., Löhne, A.: Minimal element theorems and Ekeland’s principle with set relations. J. Nonlinear Convex Anal. 7(1), 19-37(2006) [21] Kuroiwa, D.: On derivatives of set-valued maps and optimality conditions for set optimization. J. Nonlinear Convex Anal. 10(1), 41-50(2009) [22] Hamel, A.H., Schrage, C.: Directional derivatives, subdifferentials and optimality conditions for setvalued convex functions. Pac. J. Optim. 10(4), 667-689(2014) [23] Jahn, J.: Directional derivative in set optimization with the less order relation. Taiwan. J. Math. 19(3), 737-757(2015) [24] Dempe, S., Pilecka, M.: Optimality conditions for set-valued optimization problems using a modified Demyanov difference. J. Optim. Theory Appl. 171(2), 402-421(2016) [25] Ha, T.X.D.: A Hausdorff-type distance, a directional derivative of a set-valued map and applications in set optimization. Optimization 67(7), 1031-1050(2018) [26] Han, Y.: A Hausdorff-type distance, the Clarke generalized directional derivative and applications in set optimization problems. Appl. Anal. 101(4), 1243-1260(2022) [27] Göpfert, A., Riahi, H., Tammer, C., Zǎlinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, Berlin (2003) [28] Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM Classics in Applied Mathematics, vol. 5. Wiley, New York (1983), Reprint, Philadelphia (1994) [29] Rådström, H.: An embedding theorem for spaces of convex sets. Proc. Am. Math. Soc. 3(1), 165-169(1952) [30] Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984) [31] Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) [32] Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993) [33] Kuroiwa, D., Tanaka, T., Ha, T.X.D.: On cone convexity of set-valued maps. Nonlinear Anal. 30(3), 1487-1496(1997) |