[1] Vandenberghe, L., Boyd, S.:Semidefinite programming. SIAM Rev. 38, 49-95(1996) [2] Candès, E.J., Recht, B.:Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717-772(2008) [3] Candès, E.J., Tao, T.:The power of convex relaxation:near-optimal matrix completion. IEEE Trans. Inf. Theory 56, 2053-2080(2009) [4] Recht, B., Fazel, M., Parrilo, P.A.:Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization. SIAM Rev. 52, 471-501(2010) [5] Watson, G.A.:On matrix approximation problems with Ky Fan k norms. Numer. Algorithm 5, 263-272(1993) [6] Greenbaum, A., Trefethen, L.N.:GMRES/CR and Arnoldi/Lanczos as matrix approximation problems. SIAM J. Sci. Comput. 15, 359-368(1994) [7] Toh, K.-C., Trefethen, L.N.:The Chebyshev polynomials of a matrix. SIAM J. Matrix Anal. Appl. 20, 400-419(1998) [8] Boyd, S., Diaconis, P., Sun, J., Xiao, L.:Fastest mixing Markov chain on a path. Am. Math. Month. 113, 70-74(2006) [9] Boyd, S., Diaconis, P., Parrilo, P.A., Xiao, L.:Fastest mixing Markov chain on graphs with symmetries. SIAM J. Optim. 20, 792-819(2009) [10] Ding, C.:An Introduction to a Class of Matrix Optimization Problems, Ph.D Thesis, Department of Mathematics, National University of Singapore, (2012) [11] Ding, C., Sun, D.F., Toh, K.-C.:An introduction to a class of matrix cone programming. Math. Program. 144, 141-179(2014) [12] Lewis, A.S.:The convex analysis of unitarily invariant matrix functions. J. Conv. Anal. 2, 173-183(1995) [13] Lewis, A.S.:Convex analysis on the Hermitian matrices. SIAM J. Optim. 6, 164-177(1996) [14] Hestenes, M.R.:Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303-320(1969) [15] Powell, M.J.D.:A method for nonlinear constraints in minimization problems. In:Fletcher, R. (ed.) Optimization, Academic, pp. 283-298(1969) [16] Ito, K., Kunisch, K.:The augmented Lagrangian method for equality and inequality constraints in Hilbert spaces. Math. Program. 46, 341-360(1990) [17] Conn, A.R., Gould, N., Toint, P.L.:A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28, 545-572(1991) [18] Contesse-Becker, L.:Extended convergence results for the method of multipliers for non-strictly binding inequality constraints. J. Optim. Theory Appl. 79, 273-310(1993) [19] Conn,A.R.,Gould,N.,Sartenaer,A.,Toint,P.L.:ConvergencePropertiesofanAugmentedLagrangian Algorithm for Optimization with a Combination of General Equality and Linear Constraints. SIAM J. Optim. 6, 674-703(1996) [20] Pennanen, T.:Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27, 170-191(2002) [21] Shapiro, A., Sun, J.:Some properties of the augmented Lagrangian in cone constrained optimization. Math. Oper. Res. 29, 479-491(2004) [22] Sun, D.F., Sun, J., Zhang, L.W.:The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. 114, 349-391(2008) [23] Bertsekas, D.:Constrained Optimization and Lagrange Multipliers Methods. Academic Press, New York (1982) [24] Golshtein, E.G., Tretyakov, N.V.:Modified Lagrangians and Monotone Maps in Optimization. Wiley, New York (1989) [25] Fortin, M., Glowinski, R.:Augmented Lagrangian Methods:Applications to Numerical Solutions of Boundary Value Problems. North-Holland, Amsterdam (1983) [26] Bergounioux,M.:UseofaugmentedLagrangianmethodsfortheoptimalcontrolofobstacleproblems. J. Optim. Theory Appl. 95, 101-126(1997) [27] Nilssen, T.K., Mannseth, T., Tai, X.-C.:Permeability estimation with the augmented Lagrangian method for a nonlinear diffusion equation. Comput. Geosci. 7, 27-47(2003) [28] Attouch, H., Soueycatt, M.:Augmented Lagrangian and proximal alternating direction methods of multipliers in Hilbert spaces. Applications to games, PDE's and control. Pac. J. Optim. 5, 17-37(2009) [29] Zhao, X.Y., Sun, D.F., Toh, K.-C.:A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737-1765(2010) [30] Yang, L.Q., Sun, D.F., Toh, K.-C.:SDPNAL+:a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. Math. Program. Comput. 7, 331-336(2015) [31] Li, X.D., Sun, D.F., Toh, K.-C.:QSDPNAL:a two-phase augmented Lagrangian method for convex quadratic semidefinite programming. Math. Program. Comput. 10, 703-743(2018) [32] Jiang, K. F., Sun, D. F., Toh, K.-C.:Solving nuclear norm regularized and semidefinite matrix least squares problems with linear equality constraints, In:Discrete Geometry and Optimization, Springer, 133-162(2013) [33] Chen, C.H., Liu, Y.J., Sun, D.F., Toh, K.-C.:A semismooth Newton-CG dual proximal point algorithm for matrix spectral norm approximation problems. Math. Program. 155, 435-470(2016) [34] Fernández,D.,Solodov,M.V.:LocalconvergenceofexactandinexactaugmentedLagrangianmethods under the second-order sufficient optimality condition. SIAM J. Optim. 22, 384-407(2012) [35] Dontchev, A.L., Rockafellar, R.T.:Characterizations of Lipschitzian stability in nonlinear programming. In Mathematical Programming With Data Perturbations, Marcel Dekker, New York, pp. 65-82(1997) [36] Klatte, D.:Upper Lipschitz behavior of solutions to perturbed C1,1 programs. Math. Program. 88, 285-311(2000) [37] Izmailov, A.F., Kurennoy, A.S., Solodov, M.V.:A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systems. Math. Program. 142, 591-604(2013) [38] Mordukhovich, B.S., Sarabi, M.E.:Critical multipliers in variational systems via second-order generalized differentiation. Math. Program. 169, 605-645(2018) [39] Rockafellar, R.T.:Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97-116(1976) [40] Bonnans, J.F., Shapiro, A.:Perturbation Analysis of Optimization Problems. Springer, New York (2000) [41] Luque, F.J.:Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control Optim. 22, 277-293(1984) [42] Cui, Y.:Large scale composite optimization problems with coupled objective functions:theory, algorithms and applications, Ph.D Thesis, Department of Mathematics, National University of Singapore, (2016) [43] Cui, Y., Ding, C., Zhao, X.Y.:Quadratic growth conditions for convex matrix optimization problems associated with spectral functions. SIAM J. Optim. 27, 2332-2355(2017) [44] Cui, Y., Sun, D.F., Toh, K.-C.:On the R-superlinear convergence of the KKT residuals generated by the augmented Lagrangian method for convex composite conic programming. Math. Program. 178, 381-415(2019) [45] Rockafellar, R.T.:Convex Analysis. Princeton University Press, Princeton (1970) [46] Miao, W.M., Pan, S.H., Sun, D.F.:A rank-corrected procedure for matrix completion with fixed basis coefficients. Math. Program. 159, 289-338(2016) [47] Ding, C., Sun, D.F., Sun, J., Toh, K.-C.:Spectral Operators of Matrices. Math. Program. 168, 509-531(2018) [48] Negahban,S.,Wainwright,M.J.:Restrictedstrongconvexityandweightedmatrixcompletion:optimal bounds with noise. J. Mach. Learn. Res. 13, 1665-1697(2012) [49] Klopp, O.:Noisy low-rank matrix completion with general sampling distribution. Bernoulli 20, 282-303(2014) [50] Dontchev, A.L., Rockafellar, R.T.:Implicit Functions and Solution Mappings. Springer, New York (2009) [51] Ioffe, A.D., Outrata, J.V.:On metric and calmness qualification conditions in subdifferential calculus. Set-Valued Anal. 16, 199-227(2008) [52] Fabian,M.,Henrion,R.,Kruger,A.Y.,Outrata,J.V.:Errorbounds:necessaryandsufficientconditions. Set-Valued Variat. Anal. 18, 121-149(2010) [53] Gfrerer, H.:First order and second order characterizations of metric subregularity and calmness of constraint set mappings. SIAM J. Optim. 21, 1439-1474(2011) [54] Li,G.Y.,Mordukhovich,B.S.:Höldermetricsubregularitywithapplicationstoproximalpointmethod. SIAM J. Optim. 22, 1655-1684(2012) [55] Gfrerer, H.:On directional metric subregularity and second-order optimality conditions for a class of nonsmooth mathematical programs. SIAM J. Optim. 23, 632-665(2013) [56] Gfrerer, H., Outrata, J.V.:On Lipschitzian properties of implicit multifunctions. SIAM J. Optim. 26, 2160-2189(2016) [57] Luo, Z.Q., Tseng, P.:Error bounds and convergence analysis of feasible descent methods:a general approach. Ann. Oper. Res. 46, 157-178(1993) [58] Tseng, P.:Approximation accuracy, gradient methods, and error bound for structured convex optimization. Math. Program. 125, 263-295(2010) [59] Rockafellar, R.T.:Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877-898(1976) [60] Leventhal,D.:Metricsubregularity and theproximalpointmethod.J.Math.Anal.Appl. 360,681-688(2009) [61] Fischer, A.:Local behavior of an iterative framework for generalized equations with nonisolated solutions. Math. Program. 94, 91-124(2002) [62] Facchinei, F., Fischer, A., Herrich, M.:An LP-Newton method:nonsmooth equations, KKT systems, and nonisolated solutions. Math. Program. 146, 1-36(2014) [63] Mordukhovich, B.S., Ouyang, W.:Higher-order metric subregularity and its applications. J. Global Optim. 63, 777-795(2015) [64] Artacho, F.J.A., Geoffroy, M.H.:Characterization of metric regularity of subdifferentials. J. Convex Anal. 15, 365-380(2008) [65] Artacho, F.J.A., Geoffroy, M.H.:Metric subregularity of the convex subdifferential in Banach spaces. J. Nonlinear Convex Anal. 15, 35-47(2014) [66] Bauschke, H.H., Borwein, J.M.:On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367-426(1996) [67] Bauschke, H.H., Borwein, J.M., Li, W.:Strong conical hull intersection property, bounded linear regularity, Jameson's property (G), and error bounds in convex optimization. Math. Program. 86, 135-160(1999) [68] Sun, D.F.:The strong second order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res. 31, 761-776(2006) [69] Ding, C.:Variational analysis of the Ky Fan k-norm. Set-Valued Variat. Anal. 25, 265-296(2017) [70] Mangasarian, O.L.:A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7, 21-26(1988) [71] Zhou, Z.R., So, A.M.C.:A unified approach to error bounds for structured convex optimization problems. Math. Program. 165, 689-728(2017) [72] Cui,Y.,Sun,D.F.,Toh,K-C.:OntheasymptoticsuperlinearconvergenceoftheaugmentedLagrangian method for semidefinite programming with multiple solutions. arXiv:1610.00875(2016) [73] Overton, M., Womersley, R.:Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Math. Program. 62, 321-357(1993) [74] Rockafellar, R.T., Wets, R.J.-B.:Variational Analysis. Springer, New York (1998) [75] Robinson, S. M.:An implicit-function theorem for generalized variational inequalities. Technical Summary Report No. 1672, Mathematics Research Center, University of Wisconsin-Madison, 1976; available from National Technical Information Service under Accession No. ADA031952 [76] Robinson, S. M.:Some continuity properties of polyhedral multifunctions, In Mathematical Programming at Oberwolfach, vol. 14 of Mathematical Programming Studies, Springer, Heidelberg, pp. 206-214(1981) [77] Sun,J.:OnMonotropicPiecewiseQuadraticProgramming,Ph.DThesis,DepartmentofMathematics, University of Washington, Seattle (1986) [78] Han, D.R., Sun, D.F., Zhang, L.W.:Linear rate convergence of the alternating direction method of multipliers for convex composite programming. Math. Oper. Res. 43, 347-692(2018) [79] Sun, D.F., Sun, J.:Semismooth matrix-valued functions. Math. Oper. Res. 27, 150-169(2002) [80] Fischer, A.:Solution of monotone complementarity problems with locally Lipschitzian functions. Math. Program. 76, 513-532(1997) [81] Clarke, F.:Optimization and Nonsmooth Analysis. Wiley, New York (1983) [82] Hiriart-Urruty, J.-B., Strodiot, J.-J., Nguyen, V.H.:Generalized Hessian matrix and second-order optimality conditions for problems with C1,1 data. Appl. Math. Optim. 11, 43-56(1984) [83] Pang, J.-S., Sun, D.F., Sun, J.:Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Math. Oper. Res. 28, 39-63(2003) [84] Chen,L.,Sun,D.F.,Toh,K.-C.:AnefficientinexactsymmetricGauss-SeidelbasedmajorizedADMM for high-dimensional convex composite conic programming. Math. Program. 161, 237-270(2017) [85] Li, X.D., Sun, D.F., Toh, K.-C.:A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Program. 155, 333-373(2016) [86] Li, X. D.:A Two-Phase Augmented Lagrangian Method for Convex Composite Quadratic Programming, PhD thesis, Department of Mathematics, National University of Singapore, (2015) |