[1] Shapiro, A., Dentcheva, D., Ruszczyński, A.:Lectures on Stochastic Programming:Modeling and Theory. Society for Industrial and Applied Mathematics and Mathematical Programming Society, Philadelphia (2009) [2] Noyan, N., Rudolf, G.:Optimization with stochastic preferences based on a general class of scalarization functions. Oper. Res. 66(2), 463-486(2018) [3] Ji, Y., Qu, S., Wu, Z., Liu, Z.:A fuzzy-robust weighted approach for multicriteria bilevel games. IEEE Trans. Ind. Inf. (2020). https://doi.org/10.1109/TII.2020.2969456 [4] Dentcheva, D., Ruszczyński, A.:Optimization with stochastic dominance constraints. SIAM J. Optim. 14(2), 548-566(2003) [5] Liu, Y., Xu, H.:Stability analysis of stochastic programs with second order dominance constraints. Math. Prog. 142, 435-460(2013) [6] Liu, Y., Sun, H., Xu, H.:An approximation scheme for stochastic programs with second order dominance constraints. Numer. Algeb. Control Optim. 6(4), 473-490(2016) [7] Sun, H., Xu, H., Wang, Y.:A smoothing penalized sample average approximation method for stochastic programs with second-order stochastic dominance constraints. Asia-Pacific J. Oper. Res. 30(3), 548-554(2013) [8] Arrow, K.J., Karlin, S., Scarf, H.:Studies in the mathematical theory of inventory and production. Rev. Econ. Stat. 14(69), 64-108(1958) [9] Žáčková, J.:On minimax solutions of stochastic linear programming problems. Čas. Pěst. Mat. 91(4), 423-430(1966) [10] Ben-Tal, A., den Hertog, D., De Waegenaere, A., Melenberg, B., Rennen, G.:Robust solutions of optimization problems affected by uncertain probabilities. Manag. Sci. 59(2), 341-357(2013) [11] Delage, E., Ye, Y.:Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595-612(2010) [12] Goh, J., Sim, M.:Distributionally robust optimization and its tractable approximations. Oper. Res. 58(4), 902-917(2010) [13] Wiesemann, W., Kuhn, D., Sim, M.:Distributionally robust convex optimization. Oper. Res. 62(6), 1358-1376(2014) [14] Ling, A., Sun, J., Xiu, N., Yang, X.:Robust two-stage stochastic linear optimization with risk aversion. Eur. J. Oper. Res. 256(1), 215-229(2017) [15] Guo, S., Xu, H., Zhang, L.:Probability approximation schemes for stochastic programs with distributionally robust second-order dominance constraints. Optim. Methods Software 32(4), 770-789(2016) [16] Erdoǧan, E., Iyengar, G.:Ambiguous chance constrained problems and robust optimization. Math. Prog. 107(1), 37-61(2006) [17] Gao, R., J.Kleywegt, A.:Distributionally robust stochastic optimization with Wasserstein distance, Working Paper. (2016). arXiv:1604.02199 [18] Zhao, C., Guan, Y.:Data-driven risk-averse stochastic optimization with Wasserstein metric. Oper. Res. Lett. 46, 262-267(2018) [19] Bayraksan, G., Love, D.K.:Data-driven stochastic programming using phi-divergences. Turorials Oper. Res. (2015). https://doi.org/10.1287/educ.2015.0134 [20] Huang, R., Qu, S., Yang, X., Liu, Z.:Multi-stage distributionally robust optimization with risk aversion. J. Ind. Manag. Optim. 13, 1-27(2017) [21] Pflug, G.C., Pichler, A., Wozabal, D.:The 1/n investment strategy is optimal under high model ambiguity. J. Bank. Finance 36, 410-417(2012) [22] Mohajerin Esfahani, P., Kuhn, D.:Data-driven distributionally robust optimization using the Wassersteinmetric:performanceguaranteesandtractablereformulations.Math.Program. 171(1-2),115-166(2018) [23] Rachev, S.T., Rüschendorf, L.:Mass Transportation Problems. Springer, New York (1998) [24] Fournier, N., Guillin, A.:On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162(3), 707-738(2015) [25] Guo, S., Xu, H.:Distributionally robust shortfall risk optimization model and its approximation. Math. Program. 174(1-2), 473-498(2019) [26] Kallenberg, O.:Foundations of Modern Probability. Springer, New York (1997) [27] Pagnoncelli, B.K., Ahmed, S., Shapiro, A.:Sample average approximation method for chance constrained programming:theory and applications. J. Optim. Theory Appl. 142(2), 399-416(2009) |