[1] Nash, J.: Noncooperative Games. Dissertation, Princeton University (1950) [2] Hofbauer, J., Sandholm, W.H.: Stable games and their dynamics. J. Econ. Theory 144, 1665–1693(2009) [3] Sandholm, W.H.: Population Games and Evolutionary Dynamics. The MIT Press, Cambridge (2011) [4] Friedman, D., Ostrov, D.N.: Evolutionary dynamics over continuous action spaces for population games that arise from symmetric two player games. J. Econ. Theory 148, 743–777(2013) [5] Lahkar, R., Sandholm, W.H.: The projection dynamic and the geometry of population games. Games Econ. Behav. 64, 565–590(2008) [6] Reluga, T.C., Galvani, A.P.: A general approach for population games with application to vaccination. Math. Biosci. 230(2), 67–78(2011) [7] Oyama, D., Sandholm, W.H., Tercieux, O.: Sampling best response dynamics and deterministic equilibrium selection. Theor. Econ. 10, 243–281(2015) [8] Fox, M.J., Shamma, J.S.: Population games, stable games and passivity. Games 4, 561–583(2013) [9] Yang, G.H., Yang, H., Song, Q.Q.: Stability of weighted Nash equilibrium for multiobjective population games. J. Nonlinear Sci. Appl. 9, 4167–4176(2016) [10] Yang, G.H., Yang, H.: Stability of weakly pareto-Nash equilibria and pareto-Nash equilibria for multiobjective population games. Set-Valued Var. Anal. 25(2), 1–13(2016) [11] Kenderov, P.S.: Most of the optimization problems have unique solution. C. R. Acad. Bulg. Sci. 37, 297–299(1984) [12] Kenderov, P.S., Ribarska, N.K.: Most of the two person zero-sum games have unique solution. In: Workshop/Mini-Conference on Functional Analysis and Optimization, Canberra, pp. 73–82(1988) [13] Yu, J., Peng, D.T., Xiang, S.W.: Generic uniqueness of equilibrium points. Nonlinear Anal.: TMA 74, 6326–6332(2011) [14] Peng, D.T., Yu, J., Xiu, N.H.: The uniqueness and well-posedness of vector equilibrium problems with a representation theorem for the solution set. Fixed Point Theory Appl. 115, 1–13(2014) [15] Peng, D.T., Yu, J., Xiu, N.H.: Generic uniqueness of solutions for a class of vector Ky Fan inequalities. J. Optim. Theory Appl. 155, 165–179(2012) [16] Peng, D.T., Yu, J., Xiu, N.H.: Generic uniqueness theorems with some applications. J. Glob. Optim. 56, 713–725(2013) [17] Yang, H., Yu, J.: Unified approaches to well-posedness with some applications. J. Glob. Optim. 31, 371–381(2005) [18] Yu, J., Yang, H., Yu, C.: Well-posed Ky Fan’s point, quasi-variational inequality and Nash equilibrium problems. Nonlinear Anal. TMA. 66, 777–790(2007) [19] Fang, Y.P., Huang, N.J., Yao, J.C.: Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems. J. Glob. Optim. 41, 117–133(2008) [20] Li, S.J., Li, M.H.: Levitin–Polyak well-posedness of vector equilibrium problems. Math. Methods Oper. Res. 69, 125–140(2009) [21] Huang, X.X., Yang, X.Q.: Levitin–Polyak well-posedness of constrained vector optimization problems. J. Glob. Optim. 37, 287–304(2007) [22] Yang, Z., Meng, D.W.: Hadamard well-posedness of the α-core. J. Math. Anal. Appl. 452, 957–969(2017) [23] Deng, X.C., Xiang, S.W.: Well-posed generalized vector equilibrium problems. J. Inequal. Appl. 2014, 127(2014) [24] Yu, J.: The continued study on game theory and nonlinear analysis. Science Press, Beijing (2011) [25] Aliprantis, C.D., Border, K.C.: Infinite dimensional analysis. Springer, Berlin (1999) [26] Fort, M.K.: Points of continuity of semicontinuous functions. Publ. Math. Debr. 2, 100–102(1951) [27] Tan, K.K., Yu, J., Yuan, X.Z.: The stability of Ky Fan’s points. Proc. Am. Math. Soc. 123, 1511–1519(1995) |