Journal of the Operations Research Society of China ›› 2023, Vol. 11 ›› Issue (4): 707-733.doi: 10.1007/s40305-022-00411-x
• • 下一篇
收稿日期:
2020-08-12
修回日期:
2022-02-26
出版日期:
2023-12-30
发布日期:
2023-12-26
通讯作者:
Jin-Bao Jian, Peng-Jie Liu, Bo He, Xian-Zhen Jiang
E-mail:jianjb@gxu.edu.cn;liupengjie2019@163.com;bohe@st.gxu.edu.cn;yl2811280@163.com
Peng-Jie Liu1,2,3, Jin-Bao Jian1, Bo He2, Xian-Zhen Jiang1
Received:
2020-08-12
Revised:
2022-02-26
Online:
2023-12-30
Published:
2023-12-26
Contact:
Jin-Bao Jian, Peng-Jie Liu, Bo He, Xian-Zhen Jiang
E-mail:jianjb@gxu.edu.cn;liupengjie2019@163.com;bohe@st.gxu.edu.cn;yl2811280@163.com
Supported by:
中图分类号:
. [J]. Journal of the Operations Research Society of China, 2023, 11(4): 707-733.
Peng-Jie Liu, Jin-Bao Jian, Bo He, Xian-Zhen Jiang. Convergence of Bregman Peaceman-Rachford Splitting Method for Nonconvex Nonseparable Optimization[J]. Journal of the Operations Research Society of China, 2023, 11(4): 707-733.
[1] Shen, Y., Wen, Z., Zhang, Y.: Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization. Optim. Methods Softw. 29(2), 239-263 (2014) [2] Xu, Y.: Alternating proximal gradient method for sparse nonnegative Tucker decomposition. Math. Program. Comput. 7(1), 39-70 (2015) [3] Yang, L.F., Luo, J.Y., Xu, Y., Zhang, Z.R., Dong, Z.Y.: A distributed dual consensus ADMM based on partition for DC-DOPF with carbon emission trading. IEEE Trans. Ind. Inform. 16(3), 1858-1872 (2020) [4] Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two or three space variables. Trans. Am. Math. Soc. 82, 421-439 (1956) [5] Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964-979 (1979) [6] Peaceman, D.W., Rachford, H.H., Jr.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3, 28-41 (1955) [7] Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17-40 (1976) [8] Glowinski, R., Marrocco, A.: Sur l’approximation, par elements finis d’ordre un, et la resolution, par penalisation-dualit’e, d’une classe de problems de Dirichlet non lineares. Ann. Math. Stat. 9, 41-76 (1975) [9] Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168-1200 (2005) [10] Corman, E., Yuan, X.: A generalized proximal point algorithm and its convergence rate. SIAM J. Optim. 24(4), 1614-1638 (2014) [11] Gabay, D.: Chapter IX applications of the method of multipliers to variational inequalities. Stud. Math. Appl. 15, 299-331 (1983) [12] He, B., Liu, H., Wang, Z., Yuan, X.: A strictly contractive Peaceman-Rachford splitting method for convex programming. SIAM J. Optim. 24(3), 1011-1040 (2014) [13] He, B., Ma, F., Yuan, X.: Convergence study on the symmetric version of ADMM with larger step sizes. SIAM J. Imaging Sci. 9, 1467-1501 (2016) [14] Wu, Z., Li, M.: An LQP-based symmetric alternating direction method of multipliers with larger step sizes. J. Oper. Res. Soc. China 7, 365-383 (2019) [15] Sun, M., Wang, Y., Liu, J.: Generalized Peaceman-Rachford splitting method for multiple-block separable convex programming with applications to robust PCA. Calcolo 54(1), 77-94 (2017) [16] Deng, Z., Liu, S.: Generalized Peaceman-Rachford splitting method with substitution for convex programming. Optim. Lett. 14, 1781-1802 (2020) [17] Deng, Z., Liu, S.: Inertial proximal strictly contractive Peaceman-Rachford splitting method with an indefinite term for convex optimization. J. Comput. Appl. Math. 374, 112772 (2020) [18] Li, X., Yuan, X.: A proximal strictly contractive Peaceman-Rachford splitting method for convex programming with applications to imaging. SIAM J. Imaging Sci. 8(2), 1332-1365 (2015) [19] Dou, M.Y., Li, H.Y., Liu, X.W.: An inertial proximal Peaceman-Rachford splitting method (in Chinese). Sci. Sin. Math. 47(2), 333-348 (2017) [20] Lu, S., Hong, M., Wang, Z.: A nonconvex splitting method for symmetric nonnegative matrix factorization: convergence analysis and optimality. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing 2572-2576 (2017) [21] Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607-609 (1996) [22] Chartrand, R., Staneva, V.: Restricted isometry properties and nonconvex compressive sensing. Inverse Probl. 24(3), 035020 (2008) [23] Li, G., Pong, T.K.: Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems. Math. Program. 159(1-2), 371-401 (2016) [24] Chao, M.T., Han, D.R., Cai, X.J.: Convergence of the Peaceman-Rachford splitting method for a class of nonconvex programs. Numer. Math. Theory Methods Appl. 14(2), 438-460 (2021) [25] Wu, Z., Li, M., Wang, D., Han, D.: A symmetric alternating direction method of multipliers for separable nonconvex minimization problems. Asia Pac. J. Oper. Res. 34(06), 1750030 (2017) [26] Bai, J., Liang, J., Guo, K., Jing, Y.: Accelerated symmetric ADMM and its applications in signal processing (2019). arXiv:1906.12015 [27] Hong, M., Luo, Z., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26, 337-364 (2016) [28] Gao, X., Xu, Y., Zhang, S.: Randomized primal-dual proximal block coordinate updates. J. Oper. Res. Soc. China 7, 205-250 (2019) [29] Hong, M., Chang, T., Wang, X., Razaviyayn, M., Ma, S., Luo, Z.: A block successive upper bound minimization method of multipliers for linearly constrained convex optimization. Math. Oper. Res. 45(3), 797-1192 (2020) [30] Chao, M.T., Cheng, C.Z., Liang, D.Y.: A proximal block minimization method of multipliers with a substitution procedure. Optim. Methods Soft. 30(4), 825-842 (2015) [31] Gao, X., Zhang, S.: First-order algorithms for convex optimization with nonseparable objective and coupled constraints. J. Oper. Res. Soc. China 5, 131-159 (2017) [32] Cui, Y., Li, X., Sun, D., Toh, K.: On the convergence properties of a majorized alternating direction method of multipliers for linearly constrained convex optimization problems with coupled objective functions. J. Optim. Theory Appl. 169, 1013-1041 (2016) [33] Chen, C., Li, M., Liu, X., Ye, Y.: Extended ADMM and BCD for nonseparable convex minimization models with quadratic coupling terms: convergence analysis and insights. Math. Program. 173, 37-77 (2019) [34] Liu, F., Xu, L., Sun, Y., Han, D.: A proximal alternating direction method for multi-block coupled convex optimization. J. Ind. Manag. Optim. 15, 723-737 (2018) [35] Guo, K., Han, D., Wu, T.: Convergence analysis for optimization problems with nonseparable nonconvex objective and linear constraints. Pac. J. Optim. 14, 489-506 (2018) [36] Guo, K., Wang, X.: Convergence of generalized alternating direction method of multipliers for nonseparable nonconvex objective with linear constraints. J. Math. Res. Appl. 38, 523-540 (2018) [37] Chao, M., Deng, Z., Jian, J.: Convergence of linear Bregman ADMM for nonconvex and nonsmooth problems with nonseparable structure. Complexity 2020, 1-14 (2020) [38] Jiang, B., Lin, T., Ma, S., Zhang, S.: Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis. Comput. Optim. Appl. 72, 115-157 (2019) [39] Liu, Q., Shen, X., Gu, Y.: Linearized ADMM for nonconvex nonsmooth optimization with convergence analysis. IEEE Access 7, 76131-76144 (2019) [40] Wang, H., Banerjee, A.: Bregman alternating direction method of multipliers. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2816-2824 (2014) [41] Li, G., Pong, T.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25, 2434-2460 (2015) [42] Wang, F., Xu, Z., Xu, H.: Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems (2014). arXiv:1410.8625 [43] Wang, F., Cao, W., Xu, Z.: Convergence of multi-block Bregman ADMM for nonconvex composite problems. Sci. China Inform. Sci. 61, 122101 (2018) [44] Xu, J., Chao, M.: An inertial Bregman generalized alternating direction method of multipliers for nonconvex optimization. J. Appl. Math. Comput. (2021). https://doi.org/10.1007/s12190-021-01590-1 [45] Rockafellar, R., Wets, R.: Variational Analysis. Springer Science & Business Media, Berlin (2009) [46] Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35, 438-457 (2010) [47] Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization or nonconvex and nonsmooth problems. Math. Program. 146, 459-494 (2014) [48] Nesterov, Y.: Introduction Lectures on Convex Optimization: A Basic Course. Springer Science & Business Media, Berlin (2013) [49] Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200-217 (1967) [50] Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116, 5-16 (2009) [51] Zeng, L., Xie, J.: Group variable selection via SCAD l2. Statistics 48, 49-66 (2014) [52] Wu, Z., Li, M.: General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems. Comput. Optim. Appl. 73, 129-158 (2019) [53] Fan, J.: Comments on ‘Wavelets in statistics: A review’ by A. Antoniadis. J. Ital. Stat. Soc. 6, 131-138 (1997) |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||