We propose a general concealed voter model (GCVM), in which individuals interact in two layers and can exchange their opinions in the internal layer. This interaction is not allowed in a CVM. By exchanging opinions in the internal layer, we mean that individuals share their real or internal opinions with their close friends. The process of opinion formation in GCVM is presented in the paper. We make the series of numerical simulations of GCVM with different network structures (both external and internal) and get some counterintuitive conclusions. For instance, we find out that sometimes with a relatively simple network structure of an external layer the consensus within the individuals’ opinions cannot be reached, and if individuals in the network are not good at expressing their opinions publicly (in an external layer), exchanging opinions with their close friends (in an internal layer) is almost useless.
[1] McKeehan, L.: A contribution to the theory of ferromagnetism. Phys. Rev. 26(2), 274 (1925)
[2] Holley, R.A., Liggett, T.M.: Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab., pp. 643-663 (1975)
[3] Noorazar, H.: Recent advances in opinion propagation dynamics: a 2020 survey. Eur. Phys. J. Plus 135, 1-20 (2020)
[4] Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phys. C 11(06), 1157-1165 (2000)
[5] DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118-121 (1974)
[6] Friedkin, N.E., Johnsen, E.C.: Social influence and opinions. J. Math. Sociol. 15(3-4), 193-206 (1990)
[7] Hegselmann, R., Ulrich, K.: Opinion dynamics and bounded confidence: models, analysis and simulation. J. Artif Soc Soc Simul (JASSS) 5(3) (2002)
[8] Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Complex Syst. 3(01-04), 87-98 (2000)
[9] Parsegov, S.E., Proskurnikov, A.V., Tempo, R., Friedkin, N.E.: Novel multidimensional models of opinion dynamics in social networks. IEEE Trans. Autom. Control 62(5), 2270-2285 (2016)
[10] Rogov, M.A., Sedakov, A.A.: Coordinated influence on the opinions of social network members. Autom. Remote. Control. 81, 528-547 (2020)
[11] Mazalov, V., Parilina, E.: The euler-equation approach in average-oriented opinion dynamics. Mathematics 8(3) (2020). 10.3390/math8030355
[12] Zha, Q., Kou, G., Zhang, H., Liang, H., Chen, X., Li, C.-C., Dong, Y.: Opinion dynamics in finance and business: a literature review and research opportunities. Financ. Innov. 6, 1-22 (2020)
[13] Krasnoshchekov, P.S.: The simplest mathematical model of behaviour. Psychology of conformism. Matematicheskoe Modelirovanie [In Russian] 10(7), 76-92 (1998)
[14] Kozitsin, I.V., Belolipetskii, A.A.: Opinion convergence in the krasnoshchekov model. J. Math. Sociol. 43(2), 104-121 (2019). https://doi.org/10.1080/0022250X.2018.1531398
[15] Bolouki, S., Malhamé, R.P., Siami, M., Motee, N.: Éminence grise coalitions: On the shaping of public opinion. IEEE Trans. Control Netw. Syst. 4(2), 133-145 (2017). https://doi.org/10.1109/TCNS.2015.2482218
[16] Dong, Y., Zhan, M., Kou, G., Ding, Z., Liang, H.: A survey on the fusion process in opinion dynamics. Inf. Fusion 43, 57-65 (2018)
[17] Gastner, M.T., Oborny, B., Gulyás, M.: Consensus time in a voter model with concealed and publicly expressed opinions. J. Stat. Mech Theory Exp. 2018(6), 063401 (2018)
[18] Gastner, M.T., Takács, K., Gulyás, M., Szvetelszky, Z., Oborny, B.: The impact of hypocrisy on opinion formation: A dynamic model. PLoS ONE 14(6), 0218729 (2019)
[19] Donati, S., Zappalà, S., González-Romá, V.: The influence of friendship and communication network density on individual innovative behaviours: a multilevel study. Eur. J. Work Organ. Psychol. 25(4), 583-596 (2016). https://doi.org/10.1080/1359432X.2016.1179285
[20] Festinger, L.: A Theory of Cognitive Dissonance. Stanford University Press, Stanford (1957)
[21] Belykh, I., Hasler, M., Lauret, M., Nijmeijer, H.: Synchronization and graph topology. Int. J. Bifurc. Chaos 15(11), 3423-3433 (2005)