[1] Candès, E., Romberg, J., Tao, T.:Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory. 52(2), 489-509(2006)
[2] Eldar, Y., Kutyniok, G.:Compressed Sensing:Theory and Applications. Cambridge University Press, Cambridge (2012)
[3] Foucart, S., Rauhut, H.:A Mathematical Introduction to Compressive Sensing. Birkhäuser Basel (2013). https://doi.org/10.1007/978-0-8176-4948-7
[4] Zhao, Y.-B.:Sparse Optimization Theory and Methods. CRC Press, Boca Raton, FL (2018)
[5] Boche, H., Calderbank, R., Kutyniok, G., Vybiral, J.:Compressed Sensing and Its Applications. Springer, New York (2019)
[6] De Maio, A., Yonina, C., Alexander, M.(eds.):Compressed Sensing in Radar Signal Processing. Cambridge University Press, Cambridge (2019)
[7] Elad, M.:Sparse and Redundant Representations:From Theory to Applications in Signal and Image Processing. Springer, New York (2010)
[8] Patel, V., Chellappa, R.:Sparse representations, compressive sensing and dictionaries for pattern recognition. The First Asian Conference on Pattern Recognition, IEEE. 325-329(2011)
[9] Choi, J., Shim, B., Ding, Y., Rao, B., Kim, D.:Compressed sensing for wireless communications:Useful tips and tricks. IEEE Commun. Surveys&Tutorials. 19(3), 1527-1549(2017)
[10] Chen, S., Donoho, D., Saunders, M.:Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129-159(2001)
[11] Candès, E., Tao, T.:Decoding by linear programming. IEEE Trans. Inform. Theory. 51(12), 4203-4215(2005)
[12] Candès, E., Wakin, M., Boyd, S.:Enhancing sparsity by reweighted 1-minimization. J. Fourier Anal. Appl. 14, 877-905(2008)
[13] Zhao, Y.-B., Li, D.:Reweighted 1-minimization for sparse solutions to underdetermined linear systems. SIAM J. Optim. 22, 893-912(2012)
[14] Zhao, Y.-B., Kocvara, M.:A new computational method for the sparsest solutions to systems of linear ˇ equations. SIAM J. Optim. 25(2), 1110-1134(2015)
[15] Zhao, Y.-B., Luo, Z.-Q.:Constructing new reweighted 1-algorithms for sparsest points of polyhedral sets. Math. Oper. Res. 42, 57-76(2017)
[16] Tropp, J., Gilbert, A.:Signal recovery from random measurements via orthogonal mathcing pursuit. IEEE Trans. Inform. Theory. 53, 4655-4666(2007)
[17] Needell, D., Vershynin, R.:Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process. 4(2), 310-316(2010)
[18] Dai, W., Milenkovic, O.:Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory. 55, 2230-2249(2009)
[19] Needell, D., Tropp, J.:CoSaMP:Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26, 301-321(2009)
[20] Satpathi, S., Chakraborty, M.:On the number of iterations for convergence of CoSaMP and Subspace Pursuit algorithms. Appl. Comput. Harmon. Anal. 43(3), 568-576(2017)
[21] Donoho, D.:De-noising by soft-thresholding. IEEE Trans. Inform. Theory. 41, 613-627(1995)
[22] Fornasier, M., Rauhut, H.:Iterative thresholding algorithms. Appl. Comput. Harmon. Anal. 25(2), 187-208(2008)
[23] Blumensath, T., Davies, M.:Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27, 265-274(2009)
[24] Blumensath, T., Davies, M.:Normalized iterative hard thresholding:Guaranteed stability and performance. IEEE J. Sel. Top. Signal Process. 4, 298-309(2010)
[25] Blumensath, T.:Accelerated iterative hard thresholding. Signal Process. 92, 752-756(2012)
[26] Bouchot, J., Foucart, S., Hitczenki, P.:Hard thresholding pursuit algorithms:Number of iterations. Appl. Comput. Harmon. Anal. 41, 412-435(2016)
[27] Meng, N., Zhao, Y.-B.:Newton-step-based hard thresholding algorithms for sparse signal recovery. IEEE Trans. Signal Process. 68, 6594-6606(2020)
[28] Zhao, Y.-B.:Optimal k-thresholding algorithms for sparse optimization problems. SIAM J. Optim. 30(1), 31-55(2020)
[29] Zhao, Y.-B., Luo, Z.-Q.:Analysis of optimal thresholding algorithms for compressed sensing. Signal Process. 187, 108148(2021)
[30] Blumensath, T., Davies, M.:Iterative hard thresholding for sparse approximation. J. Fourier Anal. Appl. 14, 629-654(2008)
[31] Foucart, S.:Hard thresholding pursuit:an algorithm for compressive sensing. SIAM J. Numer. Anal. 49(6), 2543-2563(2011)
[32] Tanner, J., Wei, K.:Normalized iterative hard thresholding for matrix completion. SIAM J. Sci. Comput. 35(5), 104-125(2013)
[33] Zhou, S., Xiu, N., Qi, H.:Global and quadratic convergence of Newton hard-thresholding pursuit. J. Mach. Learn. Res. 22(12), 1-45(2021)
[34] Zhou, S., Pan, L., Xiu, N.:Subspace Newton method for the 0-regularized optimization. arXiv:2004.05132(2020)
[35] Jing, M., Zhou, X., Qi, C.:Quasi-Newton iterative projection algorithm for sparse recovery. Neurocomputing 144, 169-173(2014)
[36] Wang, Q., Qu, G.:A new greedy algorithm for sparse recovery. Neurocomputing 275, 137-143(2018)
[37] Grant, M., Boyd, S.:CVX:Matlab software for Disciplined Convex Programming. Version 1.21,(2017)