[1] Minty, G.:Monotone operators in Hilbert space. Duke Mathematical Journal 29, 341-346(1962)
[2] Moreau, J.:Proximité et dualité dans un espace hilbertien. Bulletin de la Socit Chimique de France, 273-299(1965)
[3] Martinet, B.:Regularization d'inequations variationelles par approximations successives. Revue Francaise d'Informatique et de Recherche Opérationelle 4, 154-159(1970)
[4] Fukushima, M., Mine, H.:A generalized proximal point algorithm for certain non-convex minimization problems. International Journal of Systems Science 12(8), 989-1000(1981)
[5] Güler, O.:On the convergence of the proximal point algorithm for convex minimization. SIAM Journal on Control and Optimization 29(2), 403-419(1991)
[6] Güler, O.:New proximal point algorithms for convex minimization. SIAM Journal on Optimization 2(4), 649-664(1992)
[7] Rockafellar, R.T.:Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization 14(5), 877-898(1976)
[8] Hestenes, M.R.:Multiplier and gradient methods. Journal of Optimization Theory and Applications 4(5), 303-320(1969)
[9] Powell, M.J.:A Method for Nonlinear Constraints in Minimization Problems. In:Fletcher, R. (ed.) Optimization, pp. 283-298. Academic Press (1969)
[10] Glowinski, R., Marroco, A.:Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique 9(2), 41-76(1975)
[11] Lions, P.-L., Mercier, B.:Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis 16(6), 964-979(1979)
[12] Parikh, N., Boyd, S.:Proximal algorithms. Foundations and Trends in Optimization 1(3), 127-239(2014)
[13] He, B., Fu, X., Jiang, Z.:Proximal-point algorithm using a linear proximal term. Journal of Optimization Theory and Applications 141(2), 299-319(2009)
[14] Cai, X.:A proximal point algorithm with asymmetric linear term. Optimization Letters 13(4), 777-793(2019)
[15] Guo, K., Han, D.:Nonsymmetric proximal point algorithm with moving proximal centers for variational inequalities:convergence analysis. Applied Numerical Mathematics 147, 1-18(2020)
[16] Cai, X., Gu, G., He, B., Yuan, X.:A proximal point algorithm revisit on the alternating direction method of multipliers. Science China Mathematics 56(10), 2179-2186(2013)
[17] Gu, G., He, B., Yuan, X.:Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems:a unified approach. Computational Optimization and Applications 59(1), 135-161(2014)
[18] Pock, T., Chambolle, A.:Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In:2011 International Conference on Computer Vision, pages 1762-1769(2011)
[19] Bonnans, J., Gilbert, J., Lemaréchal, C., Sagastizábal, C.:A family of variable metric proximal methods. Mathematical Programming 68, 15-47(1995)
[20] Burke, J., Qian, M.:A variable metric proximal point algorithm for monotone operators. SIAM Journal on Control and Optimization 37(2), 353-375(1999)
[21] Burke, J., Qian, M.:On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating. Mathematical Programming 88(1), 157-181(2000)
[22] Kontogiorgis, S., Meyer, R.R.:A variable-penalty alternating directions method for convex optimization. Mathematical Programming 83(1-3), 29-53(1998)
[23] Rockafellar, R.T., Wets, R.J.-B.:Variational Analysis, vol. 317. Springer Science & Business Media (2009)
[24] Bauschke, H.H., Combettes, P.L.:Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer (2011)
[25] Bertsekas, D., Scientific, A.:Convex Optimization Algorithms. Athena Scientific Belmont (2015)
[26] Aragón Artacho, F.J., Geoffroy, M.H.:Characterization of metric regularity of subdifferentials. Journal of Convex Analysis 15(2), 365-380(2008)
[27] Attouch, H., Bolte, J.:On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Mathematical Programming 116(1-2), 5-16(2009)
[28] Absil, P.-A., Mahony, R., Andrews, B.:Convergence of the iterates of descent methods for analytic cost functions. SIAM Journal on Optimization 16(2), 531-547(2005)
[29] Łojasiewicz, S.:Une propriété topologique des sous-ensembles analytiques réels, les Équations auxdérivées partielles. Les Éditions aux Dérivées Partielles 117, 87-89(1963)
[30] Bochnak, J., Coste, M., Roy, M.-F.:Géométrie algébrique réelle. Ergebnisse der Mathematik und ihrer Grenzgebiete (3)[Results in Mathematics and Related Areas (3)], vol. 12. Springer-Verlag, Berlin (1987)
[31] Bolte, J., Daniilidis, A., Lewis, A.:The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimization 17(4), 1205-1223(2007)
[32] Dong, Y.:Comments on "The proximal point algorithm revisited". Journal of Optimization Theory and Applications 166(1), 343-349(2015)
[33] Dontchev, A.L., Rockafellar, R.T.:Implicit Functions and Solution Mappings, vol. 543. Springer (2009)
[34] Leventhal,D.:Metricsubregularityandtheproximalpointmethod.JournalofMathematicalAnalysis and Applications 360(2), 681-688(2009)
[35] Rockafellar, R.T.:Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of Operations Research 1(2), 97-116(1976)
[36] Rockafellar, R.T.:Convex Analysis. Princeton University Press (2015)
[37] Bertsekas, D., Nedic, A.:Convex Analysis and Optimization. Athena Scientific (2003)
[38] Douglas, J., Rachford, H.:On the numerical solution of heat conduction problems in two and three space variables. Transactions of the American Mathematical Society 82(2), 421-439(1956)
[39] Eckstein, J., Bertsekas, D.P.:On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 55(1-3), 293-318(1992)
[40] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.:Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning 3(1), 1-122(2011)
[41] Fukushima, M.:Application of the alternating direction method of multipliers to separable convex programming problems. Computational Optimization and Applications 1(1), 93-111(1992)
[42] Gabay, D., Mercier, B.:A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers and Mathematics with Applications 2(1), 17-40(1976)
[43] He, B., Liao, L., Han, D., Yang, H.:A new inexact alternating directions method for monotone variational inequalities. Mathematical Programming 92(1), 103-118(2002)
[44] Eckstein, J., Yao, W.:Understanding the convergence of the alternating direction method of multipliers:Theoretical and computational perspectives. Pacific Journal of Optimization 11(4), 619-644(2015)
[45] Fortin, M., Glowinski, R.:Augmented Lagrangian methods:application to the numerical solution of boundary-value problems. Studies in Applied Mathematics 15(3), 165-193(1983)
[46] Glowinski,R.:Onalternatingdirectionmethodsofmultipliers:ahistoricalperspective.In:Modeling, Simulation and Optimization for Science and Technology, pages 59-82. Springer (2014)
[47] He, B., You, Y., Yuan, X.:On the convergence of primal-dual hybrid gradient algorithm. SIAM Journal on Optimization 7(4), 2526-2537(2014)
[48] Jiang, F., Wu, Z., Cai, X.:Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization. Journal of Industrial and Management Optimization 16(2), 835-856(2020)
[49] Li, M., Sun, D., Toh, K.C.:A majorized admm with indefinite proximal terms for linearly constrained convex composite optimization. SIAM Journal on Optimization 26(2), 922-950(2016)
[50] Jiang,F.,Cai,X.,Han,D.:Theindefiniteproximalpointalgorithmsformaximalmonotoneoperators. Optimization 70(8), 1759-1790(2021)
[51] Yang, J., Yuan, X.:Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation 82(281), 301-329(2013)
[52] He, B., Ma, F., Yuan, X.:Optimal proximal augmented Lagrangian method and its application to full Jacobian splitting for multi-block separable convex minimization problems. IMA Journal of Numerical Analysis 40(2), 1188-1216(2020)
[53] Teboulle, M.:Entropic proximal mappings with applications to nonlinear programming. Mathematics of Operations Research 17(3), 670-690(1992)
[54] Csiszár, I.:Information-type measures of difference of probability distributions and indirect observation. Studia Scientiarum Mathematicarum Hungarica 2, 229-318(1967)
[55] Bregman, L.M.:The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7(3), 200-217(1967)
[56] Censor, Y., Zenios, S.A.:Proximal minimization algorithm with D-functions. Journal of Optimization Theory and Applications 73(3), 451-464(1992)
[57] Chen, G., Teboulle, M.:Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM Journal on Optimization 3(3), 538-543(1993)
[58] Kiwiel, K.C.:Proximal minimization methods with generalized Bregman functions. SIAM Journal on Control and Optimization 35(4), 1142-1168(1997)
[59] Iusem, A.N., Svaiter, B.F., Teboulle, M.:Entropy-like proximal methods in convex programming. Mathematics of Operations Research 19(4), 790-814(1994)
[60] Iusem, A.N., Teboulle, M.:Convergence rate analysis of nonquadratic proximal methods for convex and linear programming. Mathematics of Operations Research 20(3), 657-677(1995)
[61] Teboulle, M.:Convergence of proximal-like algorithms. SIAM Journal on Optimization 7(4), 1069-1083(1997)
[62] Auslender, A., Haddou, M.:An interior-proximal method for convex linearly constrained problems and its extension to variational inequalities. Mathematical Programming 71(1), 77-100(1995)
[63] Eckstein, J.:Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming. Mathematics of Operations Research 18(1), 202-226(1993)
[64] Bauschke, H.H., Borwein, J.M., Combettes, P.L.:Bregman monotone optimization algorithms. SIAM Journal on Control and Optimization 42(2), 596-636(2003)
[65] Burachik, R.S., Iusem, A.N.:A generalized proximal point algorithm for the variational inequality problem in a hilbert space. SIAM Journal on Optimization 8(1), 197-216(1998)
[66] Burachik, R.S., Scheimberg, S.:A proximal point method for the variational inequality problem in Banach spaces. SIAM Journal on Control and Optimization 39(5), 1633-1649(2000)
[67] Auslender, A., Teboulle, M., Ben-Tiba, S.:A logarithmic-quadratic proximal method for variational inequalities. Computational Optimization and Applications 12(1-3), 31-40(1999)
[68] Auslender, A., Teboulle, M.:Entropic proximal decomposition methods for convex programs and variational inequalities. Mathematical Programming 91(1), 33-47(2001)
[69] Han, D.:A new hybrid generalized proximal point algorithm for variational inequality problems. Journal of Global Optimization 26(2), 125-140(2003)
[70] Han, D.:A hybrid entropic proximal decomposition method with self-adaptive strategy for solving variational inequality problems. Computers and Mathematics with Applications 55(1), 101-115(2008)
[71] He, H., Wang, K., Cai, X., Han, D.:An LQP-based two-step method for structured variational inequalities. Journal of the Operations Research Society of China 5(3), 301-317(2017)
[72] Li, M., Yuan, X.:A strictly contractive Peaceman-Rachford splitting method with logarithmicquadratic proximal regularization for convex programming. Mathematics of Operations Research 40(4), 842-858(2015)
[73] Tao, M., Yuan, X.:On the O(1/t) convergence rate of alternating direction method with logarithmicquadratic proximal regularization. SIAM Journal on Optimization 22(4), 1431-1448(2012)
[74] Yuan, X., Li, M.:An LQP-based decomposition method for solving a class of variational inequalities. SIAM Journal on Optimization 21(4), 1309-1318(2011)
[75] He, H., Cai, X., Han, D.:A class of nonlinear proximal point algorithms for variational inequality problems. International Journal of Computer Mathematics 92(7), 1385-1401(2015)
[76] Han, D., He, B.:A new accuracy criterion for approximate proximal point algorithms. Journal of Mathematical Analysis and Applications 263(2), 343-354(2001)
[77] Yang, Z., He, B.:A relaxed approximate proximal point algorithm. Annals of Operations Research 133(1), 119-125(2005)
[78] Eckstein, J.:Approximate iterations in Bregman-function-based proximal algorithms. Mathematical programming 83(1-3), 113-123(1998)
[79] Solodov, M.V., Svaiter, B.F.:A hybrid projection-proximal point algorithm. Journal of Convex Analysis 6(1), 59-70(1999)
[80] Humes, C., Silva, P.J.:Inexact proximal point algorithms and descent methods in optimization. Optimization and Engineering 6(2), 257-271(2005)
[81] Solodov, M.V., Svaiter, B.F.:An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions. Mathematics of Operations Research 25(2), 214-230(2000)
[82] He, B., Liao, L., Yang, Z.:A new approximate proximal point algorithm for maximal monotone operator. Science in China Series A:Mathematics 46(2), 200(2003)
[83] He, B., Yang, Z., Yuan, X.:An approximate proximal-extragradient type method for monotone variational inequalities. Journal of Mathematical Analysis and Applications 300(2), 362-374(2004)
[84] Burachik, R.S., Iusem, A.N., Svaiter, B.F.:Enlargement of monotone operators with applications to variational inequalities. Set-Valued Analysis 5(2), 159-180(1997)
[85] Solodov, M.V., Svaiter, B.F.:A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Analysis 7(4), 323-345(1999)
[86] Korpelevich, G.:The extragradient method for finding saddle points and other problems. Matecon 12, 747-756(1976)
[87] Solodov, M.V., Svaiter, B.F.:A unified framework for some inexact proximal point algorithms. Numerical Functional Analysis and Optimization 22(7-8), 1013-1035(2001)
[88] Hager, W., Zhang, H.:Asymptotic convergence analysis of a new class of proximal point methods. SIAM Journal on Control and Optimization 46(5), 1683-1704(2007)
[89] He, B., Yuan, X.:An accelerated inexact proximal point algorithm for convex minimization. Journal of Optimization Theory and Applications 154(2), 536-548(2012)
[90] Bnouhachem, A., Noor, M.A.:Inexact proximal point method for general variational inequalities. Journal of Mathematical Analysis and Applications 324(2), 1195-1212(2006)
[91] Zaslavski, A.J.:Inexact proximal point methods in metric spaces. Set-Valued and Variational Analysis 19(4), 589-608(2011)
[92] Burachik, R., Dutta, J.:Inexact proximal point methods for variational inequality problems. SIAM Journal on Optimization 20(5), 2653-2678(2010)
[93] Salzo, S., Villa, S.:Inexact and accelerated proximal point algorithms. Journal of Convex Analysis 19(4), 1167-1192(2012)
[94] Eckstein, J., Yao, W.:Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM. Mathematical Programming 170(2), 417-444(2018)
[95] Qian, M.:The Variable Metric Proximal Point Algorithm:Theory and Application. PhD thesis, (1992)
[96] Chen, X., Fukushima, M.:Proximal quasi-Newton methods for nondifferential convex optimization. Mathematical Programming 85, 313-334(1999)
[97] Fukushima, M., Qi, L.:A globally and superlinearly convergent algorithm for nonsmooth convex minimization. SIAM Journal on Optimization 6(4), 1106-1120(1996)
[98] Qi, L., Chen, X.:A preconditioning proximal Newton method for nondifferentiable convex optimization. Mathematical Programming 76, 411-430(1995)
[99] Lemaréchal, C., Sagastizábal, C.:An approach to variable metric bundle methods, volume 197 of LNCIS, pages 144-162. Springer, Berlin (1994)
[100] Lemaréchal,C.,Sagastizábal,C.:Variablemetricbundlemethods:fromconceptualtoimplementable forms. Mathematical Programming 76, 393-410(1997)
[101] Mifflin,R.:Aquasi-second-orderproximalbundlealgorithm.MathematicalProgramming 73,51-72(1996)
[102] Mifflin, R., Sun, D., Qi, L.:Quasi-Newton bundle-type methods for nondifferentiable convex optimization. SIAM Journal on Optimization 8, 583-603(1998)
[103] Lemaréchal, C.:Bundle methods in nonsmooth optimization. Pergamon Press, Oxford (1978)
[104] Qian, M., Burke, J.:On the local super-linear convergence of a matrix secant Implementation of the variable metric proximal point algorithm for monotone operators, pp. 317-334. Kluwer Academic Publishers (1999)
[105] Parente, L., Lotito, P., Solodov, M.:A class of inexact variable metric proximal point algorithms. SIAM Journal on Optimization 19(1), 240-260(2008)
[106] Lin, H., Mairal, J., Harchaoui, Z.:An inexact variable metric proximal point algorithm for generic quasi-Newton acceleration. SIAM Journal on Optimization 29(2), 1408-1443(2019)
[107] Combettes, P., Vu, B.-C.:Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization 63(9), 1289-1318(2014)
[108] Becker, S., Fadili, J., Ochs, P.:On quasi-Newton forwad-backwad splitting proximal calculus and convergence. SIAM Journal on Optimization 29(4), 2445-2481(2019)
[109] Chouzenoux, E., Pesquet, J.-C., Repetti, A.:Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. Journal of Optimization Theory and Applications 162(1), 107-132(2014)
[110] Salzo, S.:The variable metric forward-backward splitting algorithm unde mild differentiablility assumptions. SIAM Journal on Optimization 27(4), 2153-2181(2017)
[111] Stella, L., Themelis, A., Patrinos, P.:Forward-backward quasi-Newton methods for nonsmooth optimization problems. Computational Optimization and Applications 67, 443-487(2017)
[112] Vu, B.-C.:A variable metric extension of the forward-backward-forward algorithm for monotone operators. Numerical Functional Analysis and Optimization 34(9), 1050-1065(2013)