On the Stable Gani-Type Attainability Problem Controlled by Promotion at Maximum Entropy

Expand
  • Department of Statistics, University of Benin, Benin City 300271, Nigeria

Received date: 2019-05-14

  Revised date: 2019-07-30

  Online published: 2021-09-26

Abstract

This study considers the attainability problem in one-step for the stable Gani-type model controlled by promotion within the context of maximum entropy. The technique adopted involves formulating the attainability problem as a constrained optimisation problem wherein the objective is to maximise the Shannon entropy rate subject to certain constraints imposed by the attainable configuration and the sub-stochastic transition matrix. The principle of maximum entropy is used to obtain results that are consistent with the exponential representation of transition probabilities for manpower systems.

Cite this article

Virtue Uwabomwen Ekhosuehi . On the Stable Gani-Type Attainability Problem Controlled by Promotion at Maximum Entropy[J]. Journal of the Operations Research Society of China, 2021 , 9(3) : 673 -690 . DOI: 10.1007/s40305-020-00301-0

References

[1] Gani, J.:Formulae for projecting enrolment and degrees awarded in universities. J. R. Stat. Soc. A 126, 400-409(1963)
[2] Bartholomew, D.J., Forbes, A.F., McClean, S.I.:Statistical Techniques for Manpower Planning, 2nd edn. Wiley, Chichester (1991)
[3] Vassiliou, P.-C.G.:A note on stability in Gani-type models in manpower systems. J. Oper. Res. Soc. 31(10), 953-954(1980)
[4] Abdallaoui, G.:Probability of maintaining or attaining a structure in one step. J. Appl. Probab. 24(4), 1006-1011(1987)
[5] Komarudin, K., Guerry, M.-A., Vanden Berghe, G., De Feyter, T.:Balancing attainability, desirability and promotion steadiness in manpower planning systems. J. Oper. Res. Soc. (2015). https://doi.org/10.1057/jors.2015.26
[6] Komarudin, De Feyter, T., Guerry, M.-A., Vanden Berghe, G.:Balancing desirability and promotion steadiness in partially stochastic manpower systems. Commun. Stat. Theory Methods 45(6), 1805-1818(2016). https://doi.org/10.1080/03610926.2014.1001495
[7] De Feyter, T., Guerry, M.-A., Komarudin:Optimizing cost-effectiveness in a stochastic Markov manpower planning system under control by recruitment. Ann. Oper. Res. 253, 117-131(2017). https://doi.org/10.1007/s10479-016-2311-4
[8] Ekhosuehi, V.U., Osagiede, A.A., Iguodala, W.A.:A procedure for distributing recruits in manpower systems. Yugosl. J. Oper. Res. 25(3), 441-452(2015). https://doi.org/10.2298/YJOR131219031E
[9] Shannon, C.E.:A mathematical theory of communication. Bell Syst. Tech. J. 27(379-423), 623-656(1948)
[10] Wilson, A.G.:The use of the concept of entropy in system modeling. Oper. Res. Q. 21, 247-265(1970)
[11] Bartholomew, D.J.:The control of a grade structure in a stochastic environment using promotion control. Adv. Appl. Probab. 11(3), 603-615(1979)
[12] Mehlmann, A.:Markovian manpower models in continuous time. J. Appl. Probab. 14(2), 249-259(1977)
[13] Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.:Staff scheduling and rostering:a review of applications, methods and models. Eur. J. Oper. Res. 153, 3-27(2004)
[14] Agnihothri, S.R., Mishra, A.K., Simmons, D.E.:Workforce cross-training decisions in field service systems with two job types. J. Oper. Res. Soc. 54(4), 410-418(2003)
[15] Nilakantan, K.:Evaluation of staffing policies in Markov manpower systems and their extension to organizations with outsource personnel. J. Oper. Res. Soc. 66(8), 1324-1340(2015). https://doi.org/10.1057/jors.2014.82
[16] Zhu, X., Sherali, H.D.:Two-stage workforce planning under demand fluctuations and uncertainty. J. Oper. Res. Soc. 60(1), 94-103(2009)
[17] Vassiliou, P.-C.G., Tsantas, N.:Maintainability of structures in nonhomogeneous Markov systems under cyclic behavior and input control. SIAM J. Appl. Math. 44(5), 1014-1022(1984)
[18] Kipouridis, I., Tsaklidis, G.:The size order of the state vector of discrete-time homogeneous Markov systems. J. Appl. Probab. 38(2), 357-368(2001)
[19] Berman, O., Larson, R.C., Pinker, E.:Scheduling workforce and workflow in a high volume factory. Manag. Sci. 43(2), 158-172(1997)
[20] Gerontidis, I.I.:Stochastic equilibria in nonhomogeneous Markov population replacement process. Math. Oper. Res. 19(1), 192-210(1994)
[21] Vassiliou, P.-C.G.:On the periodicity on non-homogeneous Markov chains and systems. Linear Algebra Appl. 471, 654-684(2015)
[22] De Feyter, T.:Modeling mixed push and pull promotion flows in manpower planning. Ann. Oper. Res. 155, 25-39(2007). https://doi.org/10.1007/s10479-007-0205-1
[23] Guerry, M.-A.:The probability of attaining a structure in a partially stochastic model. Adv. Appl. Probab. 25(4), 818-824(1993)
[24] Chattopadhyay, A.K., Gupta, A.:A stochastic manpower planning model under varying class sizes. Ann. Oper. Res. 155, 41-49(2007). https://doi.org/10.1007/s10479-007-0208-y
[25] Ekhosuehi, V.U.:A control rule for planning promotion in a Nigerian university setting. Croat. Oper. Res. Rev. 7(2), 171-188(2016)
[26] Guerry, M.-A., De Feyter, T.:Optimal recruitment strategies in a multi-level manpower planning model. J. Oper. Res. Soc. 63, 931-940(2012). https://doi.org/10.1057/jors.2011.99
[27] Belis, M., Guiasu, S.:A quantitative-qualitative measure of information in cybernetic systems. IEEE Trans. Inf. Theory 14(4), 593-594(1968)
[28] Guiasu, S.:Weighted entropy. Rep. Math. Phys. 2(3), 165-179(1971)
[29] Girardin, V.:Entropy maximization for Markov and semi-Markov processes. Methodol. Comput. Appl. Probab. 6, 109-127(2004)
[30] Guiasu, S.:Maximum entropy condition in queueing theory. J. Oper. Res. Soc. 37(3), 293-301(1986)
[31] Guiasu, S.:Maximum entropy condition in queueing theory:response. J. Oper. Res. Soc. 38(1), 98-100(1987)
[32] Guiasu, S., Shenitzer, A.:The principle of maximum entropy. Math. Intell. 7(1), 42-48(1985)
[33] McClean, S., Abodunde, T.:Entropy as a measure of stability in a manpower system. J. Oper. Res. Soc. 29(2), 885-889(1978)
[34] Nilakantan, K., Raghavendra, B.G.:Control aspects in proportionality Markov manpower systems. Appl. Math. Model. 29, 85-116(2005)
[35] Feichtinger, G.:On the generalization of stable age distributions to Gani-type person-flow models. Adv. Appl. Probab. 8(3), 433-445(1976)
Options
Outlines

/