Sparse Estimation of High-Dimensional Inverse Covariance Matrices with Explicit Eigenvalue Constraints

Expand
  • 1 Institute of Applied Mathematics, College of Mathematics and Statistics, Henan University, Kaifeng 475000, Henan, China;
    2 School of Statistics, Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, East China Normal University, Shanghai 200062, China;
    3 Department of Mathematics, Nanning Normal University, Nanning 530299, Guangxi, China

Received date: 2020-02-18

  Revised date: 2020-10-27

  Online published: 2021-09-26

Supported by

The work of Yun-Hai Xiao is supported by the National Natural Science Foundation of China (No. 11971149).

Abstract

Firstly, this paper proposes a generalized log-determinant optimization model with the purpose of estimating the high-dimensional sparse inverse covariance matrices. Under the normality assumption, the zero components in the inverse covariance matrices represent the conditional independence between pairs of variables given all the other variables. The generalized model considered in this study, because of the setting of the eigenvalue bounded constraints, covers a large number of existing estimators as special cases. Secondly, rather than directly tracking the challenging optimization problem, this paper uses a couple of alternating direction methods of multipliers (ADMM) to solve its dual model where 5 separable structures are contained. The first implemented algorithm is based on a single Gauss-Seidel iteration, but it does not necessarily converge theoretically. In contrast, the second algorithm employs the symmetric Gauss-Seidel (sGS) based ADMM which is equivalent to the 2-block iterative scheme from the latest sGS decomposition theorem. Finally, we do numerical simulations using the synthetic data and the real data set which show that both algorithms are very effective in estimating high-dimensional sparse inverse covariance matrix.

Cite this article

Yun-Hai Xiao, Pei-Li Li, Sha Lu . Sparse Estimation of High-Dimensional Inverse Covariance Matrices with Explicit Eigenvalue Constraints[J]. Journal of the Operations Research Society of China, 2021 , 9(3) : 543 -568 . DOI: 10.1007/s40305-021-00351-y

References

[1] Bilmes, J.A.:Factored sparse inverse covariance matrics. In:IEEE Iternational Conference on Acoustics, Speech and Signal Processing 2, 1009-1012(2000)
[2] Yu, H., Dauwels, J., Wang, X.:Copula Gaussian graphical models with hidden variables. In:IEEE Iternational conference on Acoustics, Speech and Signal Processing 22(10), 2177-2180(2012)
[3] Dobra, A., Hans, C., Jones, B., Nevins, J.R., Yao, G., West, M.:Sparse graphical models for exploring gene expression data. J. Multivar. Anal. 90(1), 196-212(2004)
[4] Krämer, N., Schäfer, J., Boulesteix, A.L.:Regularized estimation of large-scale gene association networks using graphical Gaussian models. Bmc Bioinf. 10(1), 1-24(2009)
[5] Kolar, M., Song, L., Ahmed, A., Xing, E.P.:Estimating time-varying networks. Ann. Appl. Stat. 4(1), 94-123(2010)
[6] Dempster, A.P.:Covariance selection. Biometrics 28(1), 157-175(1972)
[7] Meinshausen, N., Bühlmann, P.:High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34(3), 1436-1462(2006)
[8] Li, H., Gui, J.:Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics 7(2), 302-317(2006)
[9] Huang, J.Z., Liu, N., Pourahmadi, M., Liu, L.:Covariance matrix selection and estimation via penalised normal likelihood. Biometrika 93(1), 85-98(2006)
[10] Dahl,J.,Vandenberghe,L.,Roychowdhury,V.:Covarianceselectionfornonchordalgraphsviachordal embedding. Optim. Methods Softw. 23(4), 501-520(2008)
[11] Banerjee, O., El Ghaoui, L., D'Aspremont, A.:Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9(3), 485-516(2008)
[12] Yuan, M., Lin, Y.:Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68(1), 49-67(2006)
[13] Mazumder, R., Hastie, T.:The graphical lasso:new insights and alternatives. Electron. J. Stat. 6, 2125-2149(2012)
[14] Friedman, J., Hastie, T., Tibshirani, R.:Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432-441(2008)
[15] Witten, D.M., Friedman, J.H., Simon, N.:New insights and faster computations for the graphical lasso. J. Comput. Gr. Stat. 20(4), 892-900(2011)
[16] Ravikumar, P., Wainwright, M.J., Raskutti, G., Yu, B.:High-dimensional covariance estimation by minimizing 1-penalized log-determinant divergence. Electron. J. Stat. 2011(5), 935-980(2011)
[17] Lu, Z.:Adaptive first-order methods for general sparse inverse covariance selection. SIAM J. Matrix Anal. Appl. 31(4), 2000-2016(2010)
[18] D'Aspremont, A., Banerjee, O., El Ghaoui, L.:First-order methods for sparse covariance selection. SIAM J. Matrix Anal. Appl. 30(1), 56-66(2006)
[19] Lu, Z.:Smooth optimization approach for sparse covariance selection. SIAM J. Optim. 19(4), 1807-1827(2009)
[20] Chen, C., Ma, S., Yang, J.:A general inertial proximal point method for mixed variational inequality problem. SIAM J. Optim. 25(4), 2120-2142(2015)
[21] Danaher, P., Wang, P., Witten, D.:The joint graphical lasso for inverse covariance estimation across multiple classes. J. R. Stat. Soc. Ser. B 76(2), 373-397(2014)
[22] Ma, S., Xue, L., Zou, H.:Alternating direction methods for latent variable Gaussian graphical model selection. Neural Comput. 25(8), 2172-2198(2013)
[23] Scheinberg, K., Ma, S., Goldfarb, D.:Sparse inverse covariance selection via alternating linearization methods. In:International Conference on Neural Information Processing Systems (NIPS), 2101-2109(2010)
[24] Yang, J., Sun, D.F., Toh, K.-C.:A proximal point algorithm for log-determinant optimization with group lasso regularization. SIAM J. Optim. 23(2), 857-893(2013)
[25] Li, X.D., Sun, D.F., Toh, K.-C.:A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications. Math. Progr. 175(1), 395-418(2018)
[26] Liu, H., Wang, L., Zhao, T.:Sparse covariance matrix estimation with eigenvalue constraints. J. Comput. Gr. Stat. 23(2), 439-459(2014)
[27] Li, P., Xiao, Y.:An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation. Comput. Stat. Data Anal. 128, 292-307(2018)
[28] Li, X.D., Sun, D.F., Toh, K.-C.:A schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Progr. 155(1-2), 333-373(2016)
[29] Chen, C., He, B., Ye, Y., Yuan, X.:The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Progr. 155(1-2), 57-79(2016)
[30] Deng, W., Yin, W.:On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889-916(2016)
[31] Han, D., Sun, D., Zhang, L.:Linear rate convergence of the alternating direction method of multipliers for convex composite quadratic and semi-definite programming. Math. Oper. Res. 43(2), 622-637(2018)
[32] Yuan, X., Zhang, J.:Discerning the linear convergence of ADMM for structured convex optimization through the lens of variational analysis. J. Mach. Learn. Res. 21, 1-74(2020)
[33] Fazel, M., Pong, T.K., Sun, D.F., Tseng, P.:Hankel matrix rank minimization with applications in system identification and realization. SIAM J. Matrix Anal. Appl. 34(3), 946-977(2012)
[34] Li, L., Toh, K.-C.:An inexact interior point method for l1-regularized sparse covariance selection. Math. Progr. Comput. 2(3-4), 291-315(2010)
[35] Matthews,B.W.:Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) Protein Struct. 405(2), 442-451(1975)
[36] Fan, J., Feng, Y., Wu, Y.:Network exploration via the adaptive lasso and SCAD penalties. Ann. Appl. Stat. 3(2), 521-541(2009)
[37] Yuan, M., Lin, Y.:Model selection and estimation in the Gaussian graphical model. Biometrika 94(1), 19-35(2007)
[38] Dolan, E.D., Moré, J.J.:Benchmarking optimization software with performance profiles. Math. Progr. 91, 201-213(2002)
[39] Li,X.D.,Sun,D.F.,Toh,K.-C.:QSDPNAL:atwo-phaseNewton-CGproximalaugmentedLagrangian method for convex quadratic semidefinite programming. Math. Progr. Comput. 10(4), 703-743(2018)
Options
Outlines

/