[1] Adamo, T., Bektaş, T., Ghiani, G., Guerriero, E., Manni, E.: Path and speed optimization for conflictfree pickup and delivery under time windows. Transp. Sci. 52(4), 739-755(2018) [2] An, Y., Li, M., Lin, X., He, F., Yang, H.: Space-time routing in dedicated automated vehicle zones. Transp. Res. Part C Emerg. Technol. 120, 102777(2020) [3] Chen, C.-H., Chick, S.E., Lee, L.H., Pujowidianto, N.A.: Ranking and selection: efficient simulation budget allocation. In: Handbook of Simulation Optimization, pp. 45-80(2015) [4] Chen, C.-H., He, D., Fu, M., Lee, L.H.: Efficient simulation budget allocation for selecting an optimal subset. INFORMS J. Comput. 20(4), 579-595(2008) [5] Chen, C.-H., Lee, L.H.: Stochastic Simulation Optimization: An Optimal Computing Budget Allocation, vol. 1. World Scientific, Singapore (2011) [6] Chen, C.-H., Lin, J., Yücesan, E., Chick, S.E.: Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dyn. Syst. 10, 251-270(2000) [7] Chen, Y., Ryzhov, I.O.: Balancing optimal large deviations in sequential selection. Manage. Sci. 69(6), 3457-3473(2023) [8] Corréa, A.I., Langevin, A., Rousseau, L.-M.: Scheduling and routing of automated guided vehicles: a hybrid approach. Comput. Op. Res. 34(6), 1688-1707(2007) [9] Ding, L., Hong, L.J., Shen, H., Zhang, X.: Knowledge gradient for selection with covariates: consistency and computation. Naval Res. Logist. 69(3), 496-507(2022) [10] Du, J., Gao, S., Chen, C.-H.: A contextual ranking and selection method for personalized medicine. Manuf. Serv. Op. Manag. 26(1), 167-181(2024) [11] De Ryck, M., Versteyhe, M., Debrouwere, F.: Automated guided vehicle systems, state-of-the-art control algorithms and techniques. J. Manuf. Syst. 54, 152-173(2020) [12] Fazlollahtabar, H., Saidi-Mehrabad, M.: Methodologies to optimize automated guided vehicle scheduling and routing problems: a review study. J. Intell. Robot. Syst. 77, 525-545(2015) [13] Fransen, K., Van Eekelen, J., Pogromsky, A., Boon, M.A., Adan, I.J.: A dynamic path planning approach for dense, large, grid-based automated guided vehicle systems. Comput. Op. Res. 123, 105046(2020) [14] Frazier, P.I., Powell, W.B., Dayanik, S.: A knowledge-gradient policy for sequential information collection. SIAM J. Control. Optim. 47(5), 2410-2439(2008) [15] Fu, M.C.: Stochastic gradient estimation. In: Handbook of Simulation Optimization, pp. 105-147(2015) [16] Gao, S., Chen, W.: A new budget allocation framework for selecting top simulated designs. IIE Trans. 48(9), 855-863(2016) [17] Gao, S., Chen, W.: Efficient feasibility determination with multiple performance measure constraints. IEEE Trans. Autom. Control 62(1), 113-122(2016) [18] Glynn, P., Juneja, S.: A large deviations perspective on ordinal optimization. In: 2004 Winter Simulation Conference, pp. 577-585. IEEE (2004) [19] Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100-107(1968) [20] Hong, L.J., Fan, W., Luo, J.: Review on ranking and selection: a new perspective. Front. Eng. Manag. 8(3), 321-343(2021) [21] Hong, L.J., Jiang, G., Zhong, Y.: Solving large-scale fixed-budget ranking and selection problems. INFORMS J. Comput. 34(6), 2930-2949(2022) [22] Hu, H., Jia, X., He, Q., Fu, S., Liu, K.: Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0. Comput. Ind. Eng. 149, 106749(2020) [23] Hu, H., Yang, X., Xiao, S., Wang, F.: Anti-conflict AGV path planning in automated container terminals based on multi-agent reinforcement learning. Int. J. Prod. Res. 61(1), 65-80(2023) [24] Hunter, S.R., Nelson, B.L.: Parallel ranking and selection. In: Advances in Modeling and Simulation: Seminal Research from 50 Years of Winter Simulation Conferences, pp. 249-275. Springer (2017) [25] Kabir, Q.S., Suzuki, Y.: Comparative analysis of different routing heuristics for the battery management of automated guided vehicles. Int. J. Prod. Res. 57(2), 624-641(2019) [26] Kamiński, B., Szufel, P.: On parallel policies for ranking and selection problems. J. Appl. Stat. 45(9), 1690-1713(2018) [27] Keslin, G., Nelson, B.L., Plumlee, M., Pagnoncelli, B.K., Rahimian, H.: A classification method for ranking and selection with covariates. In: 2022 Winter Simulation Conference, pp. 1-12. IEEE (2022) [28] Kim, S.-H., Nelson, B.L.: Selecting the best system. Handb. Oper. Res. Manag. Sci. 13, 501-534(2006) [29] Li, H., Lam, H., Peng, Y.: Efficient learning for clustering and optimizing context-dependent designs. Oper. Res. 72(2), 617-638(2024) [30] Li, H., Peng, Y., Xu, X., Heidergott, B.F., Chen, C.-H.: Efficient learning for decomposing and optimizing random networks. Fundam. Res. 2(3), 487-495(2022) [31] Li, H., Xu, X., Peng, Y., Chen, C.-H.: Efficient learning for selecting important nodes in random network. IEEE Trans. Autom. Control 66(3), 1321-1328(2020) [32] Li, Y., Fu, M.C., Xu, J.: An optimal computing budget allocation tree policy for Monte Carlo tree search. IEEE Trans. Autom. Control 67(6), 2685-2699(2021) [33] Liu, X., Peng, Y., Zhang, G., Zhou, R.: An efficient node selection policy for value network based Monte Carlo tree search. Available at SSRN 4450999(2023) [34] Lee, C.Y.: An algorithm for path connections and its applications. IRE Trans. Electron. Comput. 3, 346-365(1961) [35] Lee, J.H., Lee, B.H., Choi, M.H.: A real-time traffic control scheme of multiple AGV systems for collision free minimum time motion: a routing table approach. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 28(3), 347-358(1998) [36] Lee,L.H.,Chew,E.P.,Tan,K.C.,Wang,Y.:Vehicle dispatching algorithms for container transshipment hubs. OR Spectr. 32, 663-685(2010) [37] Luo, X., Li, L., Zhao, L., Lin, J.: Dynamic intra-cell repositioning in free floating bike-sharing systems using approximate dynamic programming. Transp. Sci. 56(4), 799-826(2022) [38] Luo, J., Hong, L.J., Nelson, B.L., Wu, Y.: Fully sequential procedures for large-scale ranking-and-selection problems in parallel computing environments. Oper. Res. 63(5), 1177-1194(2015) [39] Ni, E.C., Ciocan, D.F., Henderson, S.G., Hunter, S.R.: Efficient ranking and selection in parallel computing environments. Oper. Res. 65(3), 821-836(2017) [40] Peng, Y., Chong, E.K., Chen, C.-H., Fu, M.C.: Ranking and selection as stochastic control. IEEE Trans. Autom. Control 63(8), 2359-2373(2018) [41] Peng, Y., Zhang, G.: Thompson sampling meets ranking and selection. In: 2022 Winter Simulation Conference, pp. 3075-3086. IEEE (2022) [42] Powell, W.B., Ryzhov, I.O.: Ranking and selection. Optim. Learn. 841, 71-88(2012) [43] Russo, D.: Simple Bayesian algorithms for best-arm identification. Oper. Res. 68(6), 1625-1647(2020) [44] Ryzhov, I.O.: On the convergence rates of expected improvement methods. Oper. Res. 64(6), 1515- 1528(2016) [45] Shen, H., Hong, L.J., Zhang, X.: Ranking and selection with covariates for personalized decision making. INFORMS J. Comput. 33(4), 1500-1519(2021) [46] Shi, X., Peng, Y., Zhang, G.: Top-two thompson sampling for contextual top-mc selection problems. arXiv:2306.17704(2023) [47] Shi, Z., Peng, Y., Shi, L., Chen, C.-H., Fu, M.C.: Dynamic sampling allocation under finite simulation budget for feasibility determination. INFORMS J. Comput. 34(1), 557-568(2022) [48] Vis, I.F.: Survey of research in the design and control of automated guided vehicle systems. Eur. J. Oper. Res. 170(3), 677-709(2006) [49] Vis, I.F., De Koster, R., Roodbergen, K.J., Peeters, L.W.: Determination of the number of automated guided vehicles required at a semi-automated container terminal. J. Oper. Res. Soc. 52(4), 409-417(2001) [50] Yücesan, E., Luo, Y.-C., Chen, C.-H., Lee, I.: Distributed web-based simulation experiments for optimization. Simul. Pract. Theory 9(1-2), 73-90(2001) [51] Zhang, G., Chen, B., Jia, Q.-S., Peng, Y.: Efficient sampling policy for selecting a subset with the best. IEEE Trans. Autom. Control 68(8), 4904-4911(2023) [52] Zhang, G., Chen, S., Huang, K., Peng, Y.: Efficient learning for selecting top-m context-dependent designs. IEEE Trans. Autom. Sci. Eng. (2024). https://doi.org/10.1109/TASE.2024.3391020 [53] Zhang, G., Li, H., Peng, Y.: Sequential sampling for a ranking and selection problem with exponential sampling distributions. In: 2020 Winter Simulation Conference, pp. 2984-2995. IEEE (2020) [54] Zhang, G., Peng, Y., Xu, Y.: An efficient dynamic sampling policy for monte carlo tree search. In: 2022 Winter Simulation Conference, pp. 2760-2771. IEEE (2022) [55] Zhang, G., Peng, Y., Zhang, J., Zhou, E.: Asymptotically optimal sampling policy for selecting top-m alternatives. INFORMS J. Comput. 35(6), 1261-1285(2023) [56] Zhang, S., Lee, L.H., Chew, E.P., Xu, J., Chen, C.-H.: A simulation budget allocation procedure for enhancing the efficiency of optimal subset selection. IEEE Trans. Autom. Control 61(1), 62-75(2015) [57] Zhen, L., Wu, Y.-W., Zhang, S., Sun, Q.-J., Yue, Q.: A decision framework for automatic guided vehicle routing problem with traffic congestions. J. Oper. Res. Soc. China 8, 357-373(2020) [58] Zhong, Y., Hong, L.J.: Knockout-tournament procedures for large-scale ranking and selection in parallel computing environments. Oper. Res. 70(1), 432-453(2022) [59] Zhong, Y., Liu, S., Luo, J., Hong, L.J.: Speeding up Paulson’s procedure for large-scale problems using parallel computing. INFORMS J. Comput. 34(1), 586-606(2022) |