Journal of the Operations Research Society of China ›› 2025, Vol. 13 ›› Issue (3): 723-749.doi: 10.1007/s40305-024-00549-w
Previous Articles Next Articles
Hao Cao, Jian-Qiang Hu, Teng Lian
Received:
2023-08-31
Revised:
2024-04-21
Online:
2025-09-30
Published:
2025-09-16
Contact:
Teng Lian
E-mail:tlian21@m.fudan.edu.cn
Supported by:
CLC Number:
Hao Cao, Jian-Qiang Hu, Teng Lian. Blackbox Simulation Optimization[J]. Journal of the Operations Research Society of China, 2025, 13(3): 723-749.
[1] Adrian, T., Brunnermeier, M.K.: CoVarR. Federal Reserve Bank of New York Staff Report (2008). https://doi.org/10.2139/ssrn.1269446 [2] Ahn, D., Chen, N., Kim, K.-K.: Robust risk quantification via shock propagation in financial networks. Oper. Res. 72(1), 1-18(2023) [3] Alexander, S., Coleman, T.F., Li, Y.: Minimizing CVaR and VaR for a portfolio of derivatives. J. Bank. Finance 30(2), 583-605(2006) [4] Andradóttir, S.: A review of random search methods. In: Handbook of Simulation Optimization, pp. 277-292. Springer (2015) [5] Astudillo, R., Frazier, P.I.: Thinking inside the box: A tutorial on grey-box Bayesian optimization. In: 2021 Winter Simulation Conference, pp. 1-15. IEEE (2021) [6] Audet, C.: A Survey on Direct Search Methods for Blackbox Optimization and Their Applications. Springer, Berlin (2014) [7] Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer (2017). https://doi.org/10.1007/978-3-319-68913-5 [8] Audet, C., Dzahini, K.J., Kokkolaras, M., Le Digabel, S.: Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates. Comput. Optim. Appl. 79(1), 1-34(2021) [9] Bartle, R.G.: The Elements of Integration and Lebesgue Measure. Wiley, London (2014) [10] Barton, R.R., Nelson, B.L., Xie, W.: Quantifying input uncertainty via simulation confidence intervals. INFORMS J. Comput. 26(1), 74-87(2014) [11] Barton, R.R., Lam, H., Song, E.: Input uncertainty in stochastic simulation. In: The Palgrave Handbook of Operations Research, pp. 573-620. Springer (2022) [12] Bernardi, M., Maruotti, A., Petrella, L.: Multivariate Markov-switching models and tail risk interdependence (2013). arXiv:1312.6407 [13] Bhatnagar, S.: Adaptive multivariate three-timescale stochastic approximation algorithms for simulation based optimization. ACM Trans. Model. Comput. Simul. 15(1), 74-107(2005) [14] Bhatnagar, S., Borkar, V.S.: Multiscale stochastic approximation for parametric optimization of hidden Markov models. Probab. Eng. Inf. Sci. 11(4), 509-522(1997) [15] Bhatnagar, S., Fu, M.C., Marcus, S.I., Bhatnagar, S.: Randomized difference two-timescale simultaneous perturbation stochastic approximation algorithms for simulation optimization of hidden Markov models (2000). https://apps.dtic.mil/sti/citations/ADA637176 [16] Bhatnagar, S., Sutton, R.S., Ghavamzadeh, M., Lee, M.: Natural actor-critic algorithms. Automatica 45, 2471-2482(2009) [17] Bianchi, M.L., De Luca, G., Rivieccio, G.: Non-Gaussian models for CoVarR estimation. Int. J. Forecast. 39(1), 391-404(2023) [18] Bohlin, T.P.: Practical Grey-box Process Identification: Theory and Applications. Springer, Berlin (2006) [19] Borkar, V.S.: Stochastic approximation with two time scales. Syst. Control Lett. 29(5), 291-294(1997) [20] Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint, vol. 48. Springer, Berlin (2009) [21] Cao, H., Hu, J.-Q., Hu, J.: Black-box CoVarR and its gradient estimation (2023). https://ssrn.com/abstract=4583631 [22] Cao, H., Hu, J.-Q., Lian, T., Yang, X.: Infinitesimal perturbation analysis (ipa) derivative estimation with unknown parameters (2023). https://ssrn.com/abstract=4880736 [23] Cassandras, C., Gong, W., Lee, J.: Robustness of perturbation analysis estimators for queueing systems with unknown distributions. J. Optim. Theory Appl. 70(3), 491-519(1991) [24] Cassandras, C., Gong, W.-B., Ho, Y., Hu, J., Vakili, P.: Analysis, control, and optimization of discrete event dynamic systems. In: Proceedings of 1995 American Control Conference, vol. 2, pp. 1065-1068. IEEE (1995) [25] Chang, H.S., Fu, M.C., Hu, J., Marcus, S.I.: An adaptive sampling algorithm for solving Markov decision processes. Oper. Res. 53(1), 126-139(2005) [26] Chang, H.S., Fu, M.C., Hu, J., Marcus, S.I.: A survey of some simulation-based algorithms for Markov decision processes. Commun. Inf. Syst. 7(1), 59-92(2007) [27] Chang, H.S., Hu, J., Fu, M.C., Marcus, S.I.: Simulation-based Algorithms for Markov Decision Processes, vol. 68. Springer, Berlin (2013) [28] Chang, K.-H.: Stochastic Nelder-Mead simplex method-a new globally convergent direct search method for simulation optimization. Eur. J. Oper. Res. 220(3), 684-694(2012) [29] Chang, K.H., Hong, L.J., Wan, H.: Stochastic trust-region response-surface method (STRONG)-a new response-surface framework for simulation optimization. Inf. J. Comput. 25(2), 230-243(2013) [30] Chau, M., Fu, M.C.: An overview of stochastic approximation. In: Handbook of simulation optimization, pp. 149-178(2015) [31] Chen, C.-H., Chick, S.E., Lee, L.H., Pujowidianto, N.A.: Ranking and selection: efficient simulation budget allocation. Handbook of simulation optimization, pp. 45-80(2015) [32] Chen, N., Glasserman, P.: Malliavin Greeks without Malliavin calculus. Stochastic Process. Appl. 117(11), 1689-1723(2007) [33] Chen, R., Menickelly, M., Scheinberg, K.: Stochastic optimization using a trust-region method and random models. Math. Program. 169, 447-487(2018) [34] Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. Adv. Neural Inf. Process. Syst. 31, 25(2018) [35] Chen, X., Ankenman, B.E., Nelson, B.L.: Enhancing stochastic kriging metamodels with gradient estimators. Oper. Res. 61(2), 512-528(2013) [36] Cheng, H.-F., Liu, X., Zhang, K.: Constructing confidence intervals for nested simulation. Naval Res. Logist. 69(8), 1138-1149(2022) [37] Cheng, Z., Luo, J., Wu, R.: On the finite-sample statistical validity of adaptive fully sequential procedures. Eur. J. Oper. Res. 307(1), 266-278(2023) [38] Chia, Y.L., Glynn, P.W.: Limit theorems for simulation-based optimization via random search. ACM Trans. Model. Comput. Simul. 23(3), 1-18(2013) [39] Chong, E.K.P., Ramadge, P.J.: Optimization of queues using an infinitesimal perturbation analysis-based stochastic algorithm with general update times. SIAM J. Control Optim. 31(3), 698-732(1993) [40] Conn,A.R.,Scheinberg,K.,Vicente,L.N.:Introduction to derivative-free optimization.SIAM(2009) [41] Corlu, C.G., Akcay, A., Xie, W.: Stochastic simulation under input uncertainty: a review. Oper. Res. Persp. 7, 100162(2020) [42] Custódio, A.L., Scheinberg, K., Nunes Vicente, L.: Methodologies and software for derivative-free optimization. In: Advances and Trends in Optimization with Engineering Applications, pp. 495-506(2017) [43] De Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134, 19-67(2005) [44] Dereventsov, A., Webster, C.G., Daws, J.: An adaptive stochastic gradient-free approach for high-dimensional blackbox optimization. In: Tiwari, R., Apoorva, M., Neha, Y., Pavone, M. (eds), Proceedings of International Conference on Computational Intelligence, pp. 333-348. Springer Singapore (2022) [45] Ensor, K.B., Glynn, P.W.: Stochastic optimization via grid search. Lectures in Applied MathematicsAmerican Mathematical Society 33, 89-100(1997) [46] Fan, Q., Hu, J.: Surrogate-based promising area search for Lipschitz continuous simulation optimization. INFORMS J. Comput. 30(4), 677-693(2018) [47] Fan, W., Hong, L.J., Zhang, X.: Robust selection of the best. In: 2013 Winter Simulations Conference, pp. 868-876. IEEE (2013) [48] Fan, W., Hong, L.J., Zhang, X.: Distributionally robust selection of the best. Manage. Sci. 66(1), 190-208(2020) [49] Fu, H., Hong, L.J., Jiang, G.: Sensitivity analysis of CoVaR. In: 2023 IEEE 19th International Conference on Automation Science and Engineering, pp. 1-6. IEEE (2023) [50] Fu, M., Hu, J.-Q.: Conditional Monte Carlo: Gradient Estimation and Optimization Applications. Springer, New York (1997). https://doi.org/10.1007/978-1-4615-6293-1 [51] Fu, M.C.: Convergence of a stochastic approximation algorithm for the GI/G/1 queue using infinitesimal perturbation analysis. J. Optim. Theory Appl. 65, 149-160(1990) [52] Fu, M.C.: What you should know about simulation and derivatives. Naval Res. Logist. 55(8), 723- 736(2008) [53] Fu, M.C.: Stochastic gradient estimation. Handbook of simulation optimization, pp. 105-148(2015) [54] Fu, M.C.: Handbook of Simulation Optimization. Springer, Berlin (2015) [55] Fu, M.C., Hu, J.-Q.: Extensions and generalizations of smoothed perturbation analysis in a generalized semi-Markov process framework. IEEE Trans. Autom. Control 37(10), 1483-1500(1992) [56] Fu, M.C., Hu, J.-Q.: Smoothed perturbation analysis derivative estimation for Markov chains. Oper. Res. Lett. 15(5), 241-251(1994) [57] Fu, M.C., Hu, J.-Q.: (s, S) inventory systems with random lead times: Harris recurrence and its implications in sensitivity analysis. Probab. Eng. Inf. Sci. 8(3), 355-376(1994) [58] Fu, M.C., Hu, J.-Q.: Sensitivity analysis for Monte Carlo simulation of option pricing. Probab. Eng. Inf. Sci. 9(3), 417-446(1995) [59] Fu, M.C., Hong, L.J., Hu, J.-Q.: Conditional Monte Carlo estimation of quantile sensitivities. Manage. Sci. 55(12), 2019-2027(2009) [60] Ghadimi, S., Lan, G.: An overview of stochastic approximation. Handbook of simulation optimization, pp. 179-206(2015) [61] Glasserman, P.: Glasserman, P.: Gradient Estimation Via Perturbation Analysis. Kluwer Academic Publishers, Boston (1991) [62] Glasserman, P.: Monte Carlo Methods in Financial Engineering, vol. 53. Springer, Berlin (2004) [63] Glasserman, P., Tayur, S.: Sensitivity analysis for base-stock levels in multiechelon production-inventory systems. Manage. Sci. 41(2), 263-281(1995) [64] Glasserman, P., Hu, J.-Q., Strickland, S.G.: Strongly consistent steady-state derivative estimates. Probab. Eng. Inf. Sci. 5(4), 391-413(1991) [65] Glasserman, P., Heidelberger, P., Shahabuddin, P.: Variance reduction techniques for estimating value-at-risk. Manage. Sci. 46(10), 1349-1364(2000) [66] Glynn, P.W.: Likelilood ratio gradient estimation: an overview. In: Proceedings of the 19th conference on Winter simulation, pp. 366-375(1987) [67] Gong, W.-B., Hu, J.-Q.: The maclaurin series for the gi/g/1 queue. J. Appl. Probab. 29(1), 176-184(1992) [68] Goodwin, T., Xu, J., Chen, C.-H., Celik, N.: Efficient simulation optimization with simulation learning. In: 2021 IEEE 17th International Conference on Automation Science and Engineering, pp. 2268-2273. IEEE (2021) [69] Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep Q-learning with model-based acceleration. In: International conference on machine learning, pp. 2829-2838. PMLR (2016) [70] Hare, W., Nutini, J., Tesfamariam, S.: A survey of non-gradient optimization methods in structural engineering. Adv. Eng. Softw. 59, 19-28(2013) [71] He, S., Jiang, G., Lam, H., Fu, M.C.: Adaptive importance sampling for efficient stochastic root finding and quantile estimation. Oper. Res. 2, 56(2023) [72] Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Stud. 6(2), 327-343(1993) [73] Ho, Y.-C., Cao, X.-R.: Perturbation Analysis of Discrete Event Dynamic Systems, vol. 145. Springer, Berlin (1991) [74] Ho, Y.-C., Hu, J.-Q.: An infinitesimal perturbation analysis algorithm for a multiclass G/G/1 queue. Oper. Res. Lett. 9(1), 35-44(1990) [75] Hong, L.J.: Estimating quantile sensitivities. Oper. Res. 57(1), 118-130(2009) [76] Hong, L.J., Liu, G.: Simulating sensitivities of conditional value at risk. Manage. Sci. 55(2), 281-293(2009) [77] Hong, L.J., Liu, G.: Monte Carlo estimation of value-at-risk, conditional value-at-risk and their sensitivities. In: Proceedings of the 2011 Winter Simulation Conference, pp. 95-107. IEEE (2011) [78] Hong, L.J., Nelson, B.L.: Discrete optimization via simulation using compass. Oper. Res. 54(1), 115-129(2006) [79] Hong, L.J., Nelson, B.L.: A brief introduction to optimization via simulation. In: Proceedings of the 2009 Winter simulation conference, pp. 75-85. IEEE (2009) [80] Hong, L.J., Zhang, X.: Surrogate-based simulation optimization. In: Tutorials in Operations Research: Emerging Optimization Methods and Modeling Techniques with Applications, pp. 287- 311. INFORMS (2021) [81] Hong, L.J., Hu, Z., Liu, G.: Monte Carlo methods for value-at-risk and conditional value-at-risk: a review. ACM Trans. Model. Comput. Simul. 24(4), 52(2014) [82] Hong, L.J., Juneja, S., Luo, J.: Estimating sensitivities of portfolio credit risk using Monte Carlo. INFORMS J. Comput. 26(4), 848-865(2014) [83] Hong, L.J., Nelson, B.L., Xu, J.: Discrete optimization via simulation. Handbook of simulation optimization, pp. 9-44(2015) [84] Hong, L.J., Luo, J., Zhong, Y.: Speeding up pairwise comparisons for large scale ranking and selection. In: 2016 Winter Simulation Conference, pp. 749-757. IEEE (2016) [85] Hong, L.J., Fan, W., Luo, J.: Review on ranking and selection: a new perspective. Front. Eng. Manag. 8(3), 321-343(2021) [86] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359-366(1989) [87] Hu, J., Hu, P.: On the performance of the cross-entropy method. In: Proceedings of the 2009 Winter Simulation Conference, pp. 459-468. IEEE (2009) [88] Hu, J., Fu, M.C., Marcus, S.I.: A model reference adaptive search method for global optimization. Oper. Res. 55(3), 549-568(2007) [89] Hu, J., Wang, Y., Zhou, E., Fu, M.C., Marcus, S.I.: A survey of some model-based methods for global optimization. Optimization, Control, and Applications of Stochastic Systems: In Honor of Onésimo Hernández-Lerma, pp. 157-179(2012) [90] Hu, J., Peng, Y., Zhang, G., Zhang, Q.: A stochastic approximation method for simulation-based quantile optimization. INFORMS J. Comput. 34(6), 2889-2907(2022) [91] Hu, J., Song, M., Fu, M.C.: Quantile optimization via multiple timescale local search for black-box functions. Oper. Res. Articles in Advance, 1-23(2024) [92] Hu, J.-Q.: Convexity of sample path performance and strong consistency of infinitesimal perturbation analysis estimates. IEEE Trans. Autom. Control. 37(2), 258-262(1992) [93] Hu, J.-Q.: The departure process of the GI/G/1 queue and its Maclaurin series. Oper. Res. 44(5), 810-815(1996) [94] Hu, J.-Q., Lian, T.: On comparison of steady-state infinitesimal perturbation analysis and likelihood ratio derivative estimates. In: Discrete Event Dynamic Systems, pp. 1-10(2023) [95] Hu, J.-Q., Strickland, S.G.: Strong consistency of sample path derivative estimates. Appl. Math. Lett. 3(4), 55-58(1990) [96] Hu, J.-Q., Nananukul, S., Gong, W.-B.: A new approach to (s, S) inventory systems. J. Appl. Probab. 30(4), 898-912(1993) [97] Hu, M., Xu, J., Hu, J.-Q., Chen, C.-H.: Optimal computation budget allocation with Gaussian process regression (2024). https://ssrn.com/abstract=4880333 [98] Hu, X.: Dynamic data driven simulation. SCS M&S Magazine 5, 16-22(2011) [99] Huang, W., Lin, N., Hong, L.J.: Monte-Carlo estimation of CoVarR (2022). http://arxiv.org/pdf/2210.06148v1 [100] Jiang, G., Fu, M.C.: On estimating quantile sensitivities via infinitesimal perturbation analysis. Oper. Res. 63(2), 435-441(2015) [101] Jiang, G., Fu, M.C.: Quantile sensitivity estimation for dependent sequences. J. Appl. Probab. 53(3), 715-732(2016) [102] Jiang, G., Yun, X.: Importance sampling for CoVarR estimation. In: 2022 Winter Simulation Conference, pp. 879-890. IEEE (2022) [103] Jiang, G., Fu, M.C., Xu, C.: Bias reduction in estimating quantile sensitivities. IFAC Proc. Vol. 47(3), 10463-10468(2014) [104] Jiang, G., Fu, M.C., Xu, C.: Optimal importance sampling for simulation of Lévy processes. In: 2015 Winter Simulation Conference, pp. 3813-3824. IEEE (2015) [105] Jiang, G., Hong, L.J., Nelson, B.L.: A simulation analytics approach to dynamic risk monitoring. In: 2016 Winter Simulation Conference, pp. 437-447. IEEE (2016) [106] Jiang, G., Xu, C., Fu, M.C.: Jiang, G., Xu, C., Fu, M.C.: On sample average approximation algorithms for determining the optimal importance sampling parameters in pricing financial derivatives on Lévy processes. Oper. Res. Lett. 44(1), 44-49(2016) [107] Jiang, G., Hong, L.J., Nelson, B.L.: Online risk monitoring using offline simulation. INFORMS J. Comput. 32(2), 356-375(2020) [108] Jiang, J., Peng, Y., Hu, J.: Quantile-based policy optimization for reinforcement learning. In: 2022 Winter Simulation Conference (WSC), pp. 2712-2723. IEEE (2022) [109] Jiang, J., Hu, J., Peng, Y.: Quantile-based deep reinforcement learning using two-timescale policy gradient algorithms (2023). arXiv:2305.07248 [110] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237-285(1996) [111] Karimalis, E.N., Nomikos, N.K.: Measuring systemic risk in the european banking sector: a copula CoVarR approach. Eur. J. Finance. 24(11), 944-975(2018) [112] Kibzun, A., Matveev, E.: Optimization of the quantile criterion for the convex loss function by a stochastic quasigradient algorithm. Ann. Oper. Res. 200(1), 183-198(2012) [113] Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23(3), 462-466(1952) [114] Kim, S., Pasupathy, R., Henderson, S.G.: A guide to sample average approximation. In: Handbook of simulation optimization, pp. 207-243(2015) [115] Kim, S.-H., Nelson, B.L.: On the asymptotic validity of fully sequential selection procedures for steady-state simulation. Oper. Res. 54(3), 475-488(2006) [116] Konda, V.R., Tsitsiklis, J.N.: Actor-critic-type learning algorithms for Markov decision processes. SIAM J. Control. Optim. 38, 94-123(1999) [117] Konda, V.R., Tsitsiklis, J.N.: On actor-critic algorithms. SIAM J. Control. Optim. 42(4), 1143-1166(2003) [118] Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms and Applications. Springer, Berlin (2003) [119] Lan, H., Nelson, B.L., Staum, J.: A confidence interval procedure for expected shortfall risk measurement via two-level simulation. Oper. Res. 58(5), 1481-1490(2010) [120] Larson, J., Billups, S.C.: Stochastic derivative-free optimization using a trust region framework. Comput. Optim. Appl. 64, 619-645(2016) [121] Law, A.M., Kelton, W.D., Kelton, W.D.: Simulation Modeling and Analysis, vol. 3. Mcgraw-hill, New York (2007) [122] Lei, L., Peng, Y., Fu, M.C., Hu, J.-Q.: Applications of generalized likelihood ratio method to distribution sensitivities and steady-state simulation. Dis. Event Dyn. Syst. 28, 109-125(2018) [123] Li, Z., Fan, W., Hong, L.J.: The (surprising) sample optimality of greedy procedures for large-scale ranking and selection. Manage. Sci. Articles in Advance, 1-22(2023) [124] Liu, G., Hong, L.J.: Kernel estimation of quantile sensitivities. Naval Res. Log. 56(6), 511-525(2009) [125] Liu, G., Hong, L.J.: Kernel estimation of the Greeks for options with discontinuous payoffs. Oper. Res. 59(1), 96-108(2011) [126] Liu, G., Jeff Hong, L.: Kernel estimation for quantile sensitivities. In: 2007 Winter Simulation Conference, pp. 941-948(2007) [127] Liu, M., Staum, J.: Stochastic kriging for efficient nested simulation of expected shortfall. J. Risk. 12(3), 3(2010) [128] Liu, M., Nelson, B.L., Staum, J.: An efficient simulation procedure for point estimation of expected shortfall. In: Proceedings of the 2010 Winter Simulation Conference, pp. 2821-2831. IEEE (2010) [129] Liu, T., Lin, Y., Zhou, E.: Bayesian stochastic gradient descent for stochastic optimization with streaming input data. SIAM J. Optim. 34(1), 389-418(2024) [130] Luo, J., Hong, L.J.: Large-scale ranking and selection using cloud computing. In: Proceedings of the 2011 Winter Simulation Conference, pp. 4046-4056. IEEE (2011) [131] Luo, J., Hong, L.J., Nelson, B.L., Wu, Y.: Fully sequential procedures for large-scale ranking-andselection problems in parallel computing environments. Oper. Res. 63(5), 1177-1194(2015) [132] Ma, J., Zhu, S., Wu, Y.: Joint effects of the liability network and portfolio overlapping on systemic financial risk: contagion and rescue. Quant. Finance. 21(5), 753-770(2021) [133] Ma, J.-L., Zhu, S.-S., Pang, X.-C.: How is systemic risk amplified by three typical financial networks. J. Oper. Res. Soc. China. 10(3), 579-598(2022) [134] Mainik, G., Schaanning, E.: On dependence consistency of CoVaR and some other systemic risk measures. Stat. Risk Model. 31(1), 49-77(2014) [135] Menborn, F., Augustin, F., Bungartz, H.-J., Marzouk, Y.M.: A trust-region method for derivative-free nonlinear constrained stochastic optimization (2017). arXiv: 1703.04156 [136] Muqattash, I., Hu, J.: An ε-greedy multiarmed bandit approach to markov decision processes. Stats. 6(1), 99-112(2023) [137] Ni, E.C., Ciocan, D.F., Henderson, S.G., Hunter, S.R.: Efficient ranking and selection in parallel computing environments. Oper. Res. 65(3), 821-836(2017) [138] Oh, D.H., Patton, A.J.: Time-varying systemic risk: evidence from a dynamic copula model of CDS spreads. J. Bus. Econ. Stat. 36(2), 181-195(2018) [139] Pang, X., Zhu, S., Cui, X., Ma, J.: Systemic risk of optioned portfolio: controllability and optimization. J. Econ. Dyn. Control. 153, 104701(2023) [140] Paquette, C., Scheinberg, K.: A stochastic line search method with expected complexity analysis. SIAM J. Optim. 30(1), 349-376(2020) [141] Peng, Y., Fu, M.C., Hu, J.-Q.: Estimating distribution sensitivity using generalized likelihood ratio method. In: 201613th International Workshop on Discrete Event Systems, pp. 123-128. IEEE (2016) [142] Peng, Y., Fu, M.C., Hu, J.-Q.: Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions. Quant. Finance 16(9), 1393-1411(2016) [143] Peng, Y., Fu, M.C., Glynn, P.W., Hu, J.: On the asymptotic analysis of quantile sensitivity estimation by Monte Carlo simulation. In: 2017 Winter Simulation Conference, pp. 2336-2347. IEEE (2017) [144] Peng, Y., Fu, M.C., Hu, J.-Q., Heidergott, B.: A new unbiased stochastic derivative estimator for discontinuous sample performances with structural parameters. Oper. Res. 66(2), 487-499(2018) [145] Pflug, G.C.: Optimization of Stochastic Models: The Interface Between Simulation and Optimization, vol. 373. Springer, Berlin (2012) [146] Qiu, J., Xia, J., Luo, J., Liu, Y., Liu, Y.: Integrated inventory placement and transportation vehicle selection using neural network. In: 2022 IEEE 18th International Conference on Automation Science and Engineering, pp. 1601-1608. IEEE (2022) [147] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686-707(2019) [148] Reiman, M.I., Weiss, A.: Sensitivity analysis for simulations via likelihood ratios. Oper. Res. 37(5), 830-844(1989) [149] Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400-407(1951) [150] Rubinstein, R., Shapiro, A.: Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method. Wiley, London (1993) [151] Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning, vol. 133. Springer, Berlin (2004) [152] Scaillet, O.: Nonparametric estimation and sensitivity analysis of expected shortfall. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 14(1), 115- 129(2004) [153] Shashaani, S., Hashemi, F.S., Pasupathy, R.: ASTRO-DF: a class of adaptive sampling trust-region algorithms for derivative-free stochastic optimization. SIAM J. Optim. 28(4), 3145-3176(2018) [154] Shen, H., Hong, L.J., Zhang, X.: Ranking and selection with covariates for personalized decision making. INFORMS J. Comput. 33(4), 1500-1519(2021) [155] Song, E., Shanbhag, U.V.: Stochastic approximation for simulation optimization under input uncertainty with streaming data. In: 2019 Winter Simulation Conference, pp. 3597-3608(2019) [156] Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37(3), 332-341(1992) [157] Sun, L., Hong, L.J., Hu, Z.: Optimization via simulation using Gaussian process-based search. In: Proceedings of the 2011 Winter Simulation Conference, pp. 4134-4145. IEEE (2011) [158] Sun, L., Hong, L.J., Hu, Z.: Balancing exploitation and exploration in discrete optimization via simulation through a Gaussian process-based search. Oper. Res. 62(6), 1416-1438(2014) [159] Sun, W., Hu, Z., Hong, L.J.: Gaussian mixture model-based random search for continuous optimization via simulation. In: 2018 Winter Simulation Conference, pp. 2003-2014. IEEE (2018) [160] Sun, Y., Apley, D.W., Staum, J.: Efficient nested simulation for estimating the variance of a conditional expectation. Oper. Res. 59(4), 998-1007(2011) [161] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The MIT Press, London (2020) [162] Tong, J., Hu, J., Hu, J.: Computing equilibrium prices for a capital asset pricing model with heterogeneous beliefs and margin-requirement constraints. Eur. J. Oper. Res. 256(1), 24-34(2017) [163] Tsai, S.C., Luo, J., Sung, C.C.: Combined variance reduction techniques in fully sequential selection procedures. Naval Res. Log. 64(6), 502-527(2017) [164] Tsai, S.C., Luo, J., Jiang, G., Yeh, W.C.: Adaptive fully sequential selection procedures with linear and nonlinear control variates. IISE Trans. 55(6), 561-573(2023) [165] Tulleken, H.J.: Grey-box modelling and identification using physical knowledge and Bayesian techniques. Automatica 29(2), 285-308(1993) [166] Wang, S., Hong, L.J.: Option pricing by neural stochastic differential equations: a simulationoptimization approach. In: 2021 Winter Simulation Conference, pp. 1-11. IEEE (2021) [167] Wang, T., Hong, L.J.: Large-scale inventory optimization: a recurrent neural networks-inspired simulation approach. INFORMS J. Comput. 35(1), 196-215(2023) [168] Wang, T., Xu, J., Hu, J.-Q., Chen, C.-H.: Optimal computing budget allocation for regression with gradient information. Automatica 134, 109927(2021) [169] Wang, X., Hong, L.J., Jiang, Z., Shen, H.: Gaussian process-based random search for continuous optimization via simulation. Articles in Advance, 1-23(2023) [170] Wolfowitz, J.: On the stochastic approximation method of Robbins and Monro. Ann. Math. Stat. 2, 457-461(1952) [171] Wu, D., Zhou, E.: Fixed confidence ranking and selection under input uncertainty. In: 2019 Winter Simulation Conference, pp. 3717-3727, 12(2019) [172] Wu, D., Wang, Y., Zhou, E.: Data-driven ranking and selection under input uncertainty. Oper. Res. 72(2), 781-795(2022) [173] Wu, J., Frazier, P.: The parallel knowledge gradient method for batch Bayesian optimization. Adv. Neural Inf. Process. Syst. 29, 28(2016) [174] Wu, R., Liu, S., Luo, J.: Adaptive sampling rule for ranking-and-selection problem. In: 201713th IEEE Conference on Automation Science and Engineering, pp. 1499-1505. IEEE (2017) [175] Wu, Y., Hu, J., Zhang, X.: Moment estimators for the parameters of Ornstein-Uhlenbeck processes driven by compound Poisson processes. Dis. Event Dyn. Syst. 29, 57-77(2019) [176] Wu, Y., Hu, J., Yang, X.: Moment estimators for parameters of Levy-driven Ornstein-Uhlenbeck processes. J. Time Ser. Anal. 43(4), 610-639(2022) [177] Wu, Y., Zheng, Z., Zhang, G., Zhang, Z., Wang, C.: Adaptive A/B tests and simultaneous treatment parameter optimization (2022). https://arxiv.org/abs/2210.06737 [178] Xu, J., Nelson, B.L., Hong, J.L.: Industrial strength compass: a comprehensive algorithm and software for optimization via simulation. ACM Trans. Model. Comput. Simul. 20(1), 1-29(2010) [179] Yakowitz, S., L’ecuyer, P., Vazquez-Abad, F.: Global stochastic optimization with low-dispersion point sets. Oper. Res. 48(6), 939-950(2000) [180] Yang, X., Hu, J.-Q., Hu, J., Peng, Y.: Asynchronous value iteration for Markov decision processes with continuous state spaces. In: 2020 Winter Simulation Conference, pp. 2856-2866. IEEE (2020) [181] Yang, X., Hu, J., Hu, J.: Relative Q-learning for average-reward Markov decision processes with continuous states. Available at SSRN 3993508(2021) [182] Yang, X., Wu, Y., Zheng, Z., Hu, J.-Q.: Method of moments estimation for Levy-driven OrnsteinUhlenbeck stochastic volatility models. Probab. Eng. Inf. Sci. 35(4), 975-1004(2021) [183] Zhang, K., Liu, G., Wang, S.: Bootstrap-based budget allocation for nested simulation. Oper. Res. 70(2), 1128-1142(2021) [184] Zhang, Q., Hu, J.: Actor-critic-like stochastic adaptive search for continuous simulation optimization. Oper. Res. 70(6), 3519-3537(2022) [185] Zhong, Y., Hong, L.J.: Knockout-tournament procedures for large-scale ranking and selection in parallel computing environments. Oper. Res. 70(1), 432-453(2022) [186] Zhong, Y., Liu, S., Luo, J., Hong, L.J.: Speeding up Paulsons procedure for large-scale problems using parallel computing. INFORMS J. Comput. 34(1), 586-606(2022) [187] Zhou, E., Liu, T.: Online quantification of input uncertainty for parametric models. In: 2018 Winter Simulation Conference, pp. 1587-1598, 12(2018) |
[1] | Ruo-xue Liu, Liang Ding, Wen-jia Wang, Lu Zou. Improved Convergence Rate of Nested Simulation with LSE on Sieve [J]. Journal of the Operations Research Society of China, 2025, 13(3): 837-872. |
[2] | Gong-Bo Zhang, Hao-Bin Li, Xiao-Tian Liu, Yi-Jie Peng. Simulation Budget Allocation for Improving Scheduling and Routing of Automated Guided Vehicles in Warehouse Management [J]. Journal of the Operations Research Society of China, 2025, 13(3): 775-809. |
[3] | Yuan-Lu Bai, Zhi-Yuan Huang, Henry Lam, Ding Zhao. Black-Box Rare-Event Simulation for Safety Testing of AI Agents: An Overview [J]. Journal of the Operations Research Society of China, 2025, 13(3): 750-774. |
[4] | Wei-Wei Fan, L. Jeff Hong, Guang-Xin Jiang, Jun Luo. Review of Large-Scale Simulation Optimization [J]. Journal of the Operations Research Society of China, 2025, 13(3): 688-722. |
[5] | Mahdi Rasekhi, Emrah Altun, Morad Alizadeh, Haitham M. Yousof. The Odd Log-Logistic Weibull-G Family of Distributions with Regression and Financial Risk Models [J]. Journal of the Operations Research Society of China, 2022, 10(1): 133-158. |
[6] | Xu Wang, Xiao-Bo Qu, Pan Li. Simulation Analyses of Two On-Ramp Lane Arrangements [J]. Journal of the Operations Research Society of China, 2020, 8(3): 375-390. |
[7] | Xiang Gao, Yang-Yang Xu, Shu-Zhong Zhang. Randomized Primal–Dual Proximal Block Coordinate Updates [J]. Journal of the Operations Research Society of China, 2019, 7(2): 205-250. |
[8] | L. Jeff Hong, Guang-Xin Jiang. Gradient and Hessian of Joint Probability Function with Applications on Chance-Constrained Programs [J]. Journal of the Operations Research Society of China, 2017, 5(4): 431-455. |
[9] | Jian Li· Yu Liu. Approximation Algorithms for Stochastic Combinatorial Optimization Problems [J]. Journal of the Operations Research Society of China, 2016, 4(1): 1-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||