[1] Graham, R.L., Lawler, E.L., Lenstra, J.K., et al.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287-326 (1979) [2] Schmidt, G.: Scheduling on semi-identical processors. Zeitschrift für Oper. Res. 28(5), 153-162 (1984) [3] Cui, W.W., Lu, Z.Q.: Minimizing the makespan on a single machine with flexible maintenances and jobs’ release dates. Comput. Oper. Res. 80, 11-22 (2017) [4] Lee, C.Y.: Machine scheduling with an availability constraint. J. Global Optim. 9(3-4), 395-416 (1996) [5] Yuan, J.J., Lin, Y.X.: Single machine preemptive scheduling with fixed jobs to minimize tardiness related criteria. Eur. J. Oper. Res. 164(3), 851-855 (2005) [6] Zou, J., Yuan, J.J.: Single-machine scheduling with maintenance activities and rejection. Discrete. Optim. 38, 100609 (2020) [7] Moore, J.M.: An \begin{document}$ n $\end{document} job, one machine sequencing algorithm for minimizing the number of late jobs. Manage. Sci. 15(1), 102-109 (1968) [8] Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85-103. Plenum Press, New York (1972) [9] Lawler, E.L., Moore, J.M.: A functional equation and its application to resource allocation and sequencing problems. Manage. Sci. 16(1), 77-84 (1969) [10] Sahni, S.K.: Algorithms for scheduling independent tasks. J. Assoc. Comput. Mach. 23(1), 116-127 (1976) [11] Lawler, E.L.: A dynamic programming algorithm for preemptive scheduling of a single machine to minimize the number of late jobs. Ann. Oper. Res. 26(1), 125-133 (1990) [12] Vakhania, N.: Scheduling jobs with release times preemptively on a single machine to minimize the number of late jobs. Oper. Res. Lett. 37(6), 405-410 (2009) [13] Blazewicz, J., Finke, G.: Minimizing mean weighted execution time loss on identical and uniform processors. Inform. Process. Lett. 24(4), 259-263 (1987) [14] Potts, C.N., Van Wassenhove, L.N.: Single machine scheduling to minimize total late work. Oper. Res. 40(3), 586-595 (1992) [15] Potts, C.N., Van Wassenhove, L.N.: Approximation algorithms for scheduling a single machine to minimize total late work. Oper. Res. Lett. 11(5), 261-266 (1992) [16] Kovalyov, M.Y., Potts, C.N., Van Wassenhove, L.N.: A fully polynomial approximation scheme for scheduling a single machine to minimize total weighted late work. Math. Oper. Res. 19(1), 86-93 (1994) [17] Hariri, A.M.A., Potts, C.N., Van Wassenhove, L.N.: Single machine scheduling to minimize total weighted late work. ORSA J. Comput. 7(2), 232-242 (1995) [18] Leung, J.Y.T., Yu, V.K.M., Wei, W.D.: Minimizing the weighted number of tardy task units. Discrete. Appl. Math. 51(3), 307-316 (1994) [19] Sterna, M.: A survey of scheduling problems with late work criteria. Omega 39(2), 120-129 (2011) [20] Chen, R.B., He, R.Y., Yuan, J.J.: Preemptive scheduling to minimize total weighted late work and weighted number of tardy jobs. Comput. Ind. Eng. 167, 107969 (2022) [21] Guo, S.E., Lu, L.F., Yuan, J.J., et al.: Pareto-scheduling with double-weighted jobs to minimize the weighted number of tardy jobs and total weighted late work. Nav. Res. Log. 69(5), 816-837 (2022) [22] Zhang, Y., Yuan, J.J.: A note on a two-agent scheduling problem related to the total weighted late work. J. Comb. Optim. 37(3), 989-999 (2019) [23] Yin, Y.Q., Xu, J.Y., Cheng, T.C.E., et al.: Approximation schemes for single-machine scheduling with a fixed maintenance activity to minimize the total amount of late work. Nav. Res. Log. 63(2), 172-183 (2016) [24] Li, S.S., Chen, R.X.: Minimizing total weighted late work on a single-machine with non-availability intervals. J. Comb. Optim. 44(2), 1330-1355 (2022) [25] Yuan, J.J.: Unary NP-hardness of minimizing the number of tardy jobs with deadlines. J. Scheduling. 20(2), 211-218 (2017) [26] Chen, R.B., Yuan, J.J., Ng, C.T., et al.: Single-machine scheduling with deadlines to minimize the total weighted late work. Nav. Res. Log. 7(66), 582-595 (2019) |