[1] Guan, M.G.: Graphic programming using odd or even points. Acta Math. Sin. 10, 263-266 (1960). (in Chinese) [2] Edmonds, J.: Maximum matching and a polyhedron with (0,1)-vertices. J. Res. Natl. Bureau Stand. B 69, 125-130 (1965) [3] Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math. Program. 5(1), 88-124 (1973) [4] Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. Comput. 7(2), 178-193 (1978) [5] Beullens, P., Muyldermans, L., Cattrysse, D., Oudheusden, D.V.: A guided local search heuristic for the capacitated arc routing problem. Eur. J. Oper. Res. 147(3), 629-643 (2003) [6] Corberán, Á., Martí, R., Sanchis, J.M.: A GRASP heuristic for the mixed Chinese postman problem. Eur. J. Oper. Res. 142(1), 70-80 (2002) [7] Ding, H.L., Li, J.P., Lih, K.W.: Approximation algorithms for solving the constrained arc routing problem in mixed graphs. Eur. J. Oper. Res. 239(1), 80-88 (2014) [8] Jozefowiez, N., Semet, F., Talbi, E.G.: Multi-objective vehicle routing problems. Eur. J. Oper. Res. 189, 293-309 (2008) [9] Lysgaard, J., Wøhlk, S.: A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem. Eur. J. Oper. Res. 236, 800-810 (2014) [10] Mourão, M.C., Amado, L.: Heuristic method for a mixed capacitated arc routing problem: a refuse collection application. Eur. J. Oper. Res. 160, 139-153 (2005) [11] Zachariadis, E.E., Kiranoudis, C.T.: Local search for the undirected capacitated arc routing problem with profits. Eur. J. Oper. Res. 210(2), 358-367 (2011) [12] Ghare, P.M., Montgomery, D.C., Turner, W.C.: Optimal interdiction policy for a flow network. Naval Res. Logist. Q. 18, 37-45 (1971) [13] Assimakopoulos, N.: A network interdiction model for hospital infection control. Comput. Biol. Med. 17(6), 413-422 (1987) [14] Wood, R.K.: Deterministic network interdiction. Math. Comput. Model. 17(2), 1-18 (1993) [15] Church, R.L., Scaparra, M.P., Middleton, R.S.: Identifying critical infrastructure: the median and covering facility interdiction problems. Ann. Assoc. Am. Geogr. 94(3), 491-502 (2004) [16] Salmeron, J., Wood, K., Baldick, R.: Analysis of electric grid security under terrorist threat. IEEE Trans. Power Syst. 19(2), 905-912 (2004) [17] Lin, K.C., Chern, M.S.: The most vital edges in the minimum spanning tree problem. Inform. Process. Lett. 45(1), 25-31 (1993) [18] Frederickson, G.N., Solis-Oba, R.: Increasing the weight of minimum spanning trees. J. Algorithms 33(2), 244-266 (1999) [19] Bazgan, C., Toubaline, S., Vanderpooten, D.: Critical edges/nodes for the minimum spanning tree problem: complexity and approximation. J. Comb. Optim. 26(1), 178-189 (2013) [20] Zenklusen, R.: An O(1)-approximation for minimum spanning tree interdiction. In: Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 709-728 (2015) [21] Linhares, A., Swamy, C.: Improved algorithms for MST and metric-TSP interdiction. In: Proceedings of 44th International Colloquium on Automata, Languages, and Programming (ICALP) Art.No 32, 14pp (2017) https://doi.org/10.48550/arXiv.1706.00034 [22] Zenklusen, R.: Matching interdiction. Discrete Appl. Math. 158(15), 1676-1690 (2010) [23] Dinitz, M., Gupta, A.: Packing interdiction and partial covering problems. In: Proceedings of International Conference on Integer Programming and Combinatorial Optimization (IPCO’13), pp. 157-168 (2013) [24] Pan, F., Schild, A.: Interdiction problems on planar graphs. Discrete Appl. Math. 198, 215-231 (2016) [25] Golden, B.: A problem in network interdiction. Naval Res. Logist. Q. 25(4), 711-713 (1978) [26] Ball, M.O., Golden, B.L., Vohra, R.V.: Finding the most vital arcs in a network. Oper. Res. Lett. 8(2), 73-76 (1989) [27] Israeli, E., Wood, R.K.: Shortest-path network interdiction. Networks 40(2), 97-111 (2002) [28] Phillips, C.A.: The network inhibition problem. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC’93), pp. 776-785 (1993) [29] Zenklusen, R.: Network flow interdiction on planar graphs. Discrete Appl. Math. 158(13), 1441-1455 (2010) [30] Zenklusen, R.: Connectivity interdiction. Oper. Res. Lett. 42(6-7), 450-454 (2014) [31] Armon, A., Zwick, U.: Multicriteria global minimum cuts. Algorithmica 46, 15-16 (2006) [32] Johnson, D.S., Niemi, K.A.: On knapsacks, partitions, and a new dynamic programming technique for trees. Math. Oper. Res. 8, 1-14 (1983) [33] Smith, J.C., Song, Y.J.: A survey of network interdiction models and algorithms. Eur. J. Oper. Res. 283(3), 797-811 (2020) [34] Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269-271 (1959) [35] Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389-1401 (1957) [36] Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962) [37] Gabow, H.N.: Data structures for weighted matching and extensions to b-matching and f-factors. ACM Trans. Algorithms 14(3), Art. 39, 80pp (2018) [38] Fisher, M.L.: A polynomial algorithm for the degree-constrained minimum K-tree problem. Oper. Res. 42(4), 775-779 (1994) [39] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York (1979) [40] Güntzer, M.M., Jungnickel, D.: Approximate minimization algorithms for the 0/1 knapsack and subset-sum problem. Oper. Res. Lett. 26(2), 55-66 (2000) [41] Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004) [42] Csirik, J., Frenk, J.B.G., Labbé, M., Zhang, S.: Heuristics for the 0-1 min-knapsack problem. Acta Cybern. 10(1-2), 15-20 (1991) [43] Carnes, T., Shmoys, D.B.: Primal-dual schema for capacitated covering problems. Math. Program. 153(2), 289-308 (2015) [44] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Report 388. Graduate School of Industrial Administration, Carnegie Mellon University (1976) |