[1] Wu, Z.Y., Bai, F.S., Zhang, L.S.:Convexification and concavification for a general class of global optimization problems. J. Glob. Optim. 31, 45-60(2005) [2] Li, D., Sun, X.L., Biswal, M.P., Gao, F.:Convexification, concavification, and monotonization in global optimization. Ann. Oper. Res. 105, 213-226(2001) [3] Rubinov, A., Tuy, H., Mays, H.:An algorithm for monotonic global optimization problems. Optimization 49, 205-221(2001) [4] Sun, X.L., Mckinnon, K.I.M., Li, D.:A convexification method for a class of global optimization problems with applications to reliability optimization. J. Glob. Optim. 21, 185-199(2001) [5] Tuy, H., Luc, L.T.:A new approach to optimization under monotonic constraint. J. Glob. Optim. 18, 1-15(2000) [6] Horst, R.:On the convexification of nonlinear programming problems:an applications-oriented survey. Eur. J. Oper. Res. 15, 382-392(1984) [7] Horst, R., Pardalos, P.M., Thoai, N.V.:Introduction to Global Optimization. Kluwer Acadedmic Publisher, Dordrecht (1996) [8] Li, D., Sun, X.L., Mckinnon, K.:An exact solution methods for reliability optimization in complex systems. Ann. Oper. Res. 133, 129-148(2005) [9] Tuy, H.:Monotonic optimization:problems and solution approaches. SIAM J. Optim. 11, 464-494(2000) [10] Wu, Z.Y., Lee, H.W.J., Yang, X.M.:A class of convexification and concavification methods for nonmonotone optimization problems. Optimization 54, 605-625(2005) [11] Li, D., Wu, Z.Y., Lee, H.W.J., Yang, X.M., Zhang, L.S.J.:Hidden convex minimization. Glob. Optim. 31, 211-233(2005) [12] Sun, X.L., Luo, H.Z., Li, D.:Convexification of nonsmooth monotone functions. J. Optim. Theory Appl. 132, 339-351(2007) [13] Li, D.:Convexification of a noninferior frontier. J. Optim. Theory Appl. 88, 177-196(1996) [14] Li, D.:Zero duality gap for a class of nonconvex optimization problems. J. Optim. Theory Appl. 85, 309-324(1995) [15] Li, D.:Saddle point generation in nonlinear nonconvex optimization. Nonlinear Anal. 30, 4339-4344(1997) [16] Li, D., Sun, X.L.:Local convexification of the Lagrangian function in nonconvex optimization. J. Optim. Theory Appl. 104, 109-120(2000) [17] Li, D., Sun, X.L.:Existence of a saddle point in nonconvex constrained optimization. J. Glob. Optim. 21, 39-50(2001) [18] Li, D., Sun, X.L.:Convexification and existence of a saddle point in a pth-power reformulation for nonconvex constrained optimization. Nonlinear Anal. 47, 5611-5622(2001) [19] Muscat, J.:Functional Analysis:An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras. Springer, Berlin (2014) [20] Bertsskas, D.P.:Nonlinear Programming, Second Athena Scientific, Belmont (1999) |