[1] Cortes, C., Vapnik, V.:Support-vector networks. Mach. Learn. 20(3), 273-297(1995) [2] Joachims,T.:Text categorization with support vector machines:learning with many relevant features. In:Proceedings of Conference on Machine Learning (1998) https://doi.org/10.1007/BFb0026683 [3] Li, X., Chen, G.:Face recognition based on PCA and SVM. In:IEEE Photonics and Optoelectronics, pp. 1-4(2012), https://doi.org/10.1109/SOPO.2012.6270973 [4] Sun, J., Shang, Z., Li, H.:Imbalance-oriented SVM methods for financial distress prediction:a comparative study among the new SB-SVM-ensemble method and traditional methods. J. Oper. Res. Soc. 65(12), 1905-1919(2014) [5] Chen,L.,Zhou,M.,Wu,M.,etal.:Three-layerweightedfuzzysupportvectorregressionforemotional intentionunderstandinginhuman-robotinteraction.IEEETrans.FuzzySyst. 26(5),2524-2538(2018) [6] Zhang, M., Zhen, Y., Hui, G., Chen, G.:Accurate multisteps traffic flow prediction based on SVM. Math. Probl. Eng. 1-8(2013) [7] Bai, Y., Han, X., Chen, T., Yu, H.:Quadratic kernel-free least squares support vector machine for target diseases classification. J. Combin. Optim. 30(4), 850-870(2015) [8] Fung, G., Mangasarian, O.:Proximal support vector machine classifiers. In:ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 77-86. Assoc. Comput. Mach., New York (2001) [9] Bai, Y., Zhu, Z., Yan, W.:Sparse proximal support vector machine with a specialized interior-point method. J. Oper. Res. Soc. China 3, 1-15(2015) [10] Mangasarian, O.L., Wild, E.W.:Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 69-74(2006) [11] Jayadeva, R.K., Khemchandani, R., Chandra, S.:Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 905-910(2007) [12] Shao, Y., Chen, W., Zhang, J., et al.:An efficient weighted Lagrangian twin support vector machine for imbalanced data classification. Pattern Recognit. 47(9), 3158-3167(2014) [13] Tian, Y., Ju, X.:Nonparallel support vector machine based on one optimization problem for pattern recognition. J. Oper. Res. Soc. China 3, 499-519(2015) [14] Gao, Q., Bai, Y., Zhan, Y.:Quadratic kernel-free least square twin support vector machine for binary classification problems. J. Oper. Res. Soc. China 7, 539-559(2019) [15] Zhu, X., Goldber, A.:Introduction to semi-supervised learning. Morgan & Claypool (2009) [16] Yan, X., Bai, Y., Fang, S., Luo, J.:A kernel-free quadratic surface support vector machine for semisupervised learning. J. Oper. Res. Soc. 67(7), 1001-1011(2016) [17] Zhan, Y., Bai, Y., Zhang, W., Ying, S.:A P-ADMM for sparse quadratic kernel-free least squares semi-supervised support vector machine. Neurocomputing. 306, 37-50(2018) [18] Belkin, M., Niyogi, P., Sindhwani, V.:Manifold regularization:a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399-2434(2006) [19] Chen, W., Shao, Y., Xu, D., Fu, Y.:Manifold proximal support vector machine for semi-supervised classification. Appl. Intell. 40(4), 623-638(2014) [20] Qi, Z., Tian, Y., Shi, Y.:Laplacian twin support vector machine for semi-supervised classification. Neural Netw. 35, 46-53(2012) [21] Rastogi,R.,Pal,A.:Fuzzysemi-supervisedweightedlinearlosstwinsupportvectorclustering.Knowl. Based Syst. 165, 132-148(2019) [22] Dong, H., Yang, L., Wang, X.:Robust semi-supervised support vector machines with Laplace kernelinduced correntropy loss functions. Appl. Intell. 51(21), 1-15(2021) [23] Lin, C., Wang, S.:Fuzzy support vector machines. IEEE Trans. Neural Netw. 13(2), 464-471(2002) [24] Revani, S., Wang, X., Pourpanah, F.:Intuitionistic fuzzy twin support vector machines. IEEE Trans. Fuzzy Syst. 27(11), 2140-2151(2019) [25] Tikhonov, A.:Regularization of incorrectly posed problems. Sov. Math. Doklady. 4, 1624-1627(1963) [26] Gantmacher, F.R.:Matrix Theory. Chelsea, New York (1990) [27] Zadeh, L.A.:Fuzzy sets. Inf. Control 8, 338-353(1965) [28] Atanssov, K.:Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87-96(1986) [29] Ha, M., Wang, C., Chen, J.:The support vector machine based on intuitionistic fuzzy number and kernel function. Soft Comput. 17(4), 635-641(2013) [30] Deng, N., Tian, Y., Zhang, C.:Support Vector Machines:Theory, Algorithms, and Extensions. CRC Press, Philadelphia (2013) [31] Asuncion, A., Newman, D.:UCI machine learning repository (2007) https://archive.ics.uci.edu/ml/index.php [32] Chen, W., Shao, Y., Deng, N., Feng, Z.:Laplacian least squares twin support vector machine for semi-supervised classification. Neurocomputing 145, 465-476(2014) |