[1] Yannakakis,M.:Node-andedge-deletionNP-completeproblems.In:ProceedingsoftheTenthAnnual ACM Symposium on Theory of Computing, pp. 253-264(1978) [2] Krivelevich, M.:On a conjecture of Tuza about packing and covering of triangles. Discret. Math. 142(1), 281-286(1995) [3] Kortsarz, G., Langberg, M., Nutov, Z.:Approximating maximum subgraphs without short cycles. SIAM J. Discret. Math. 24(1), 255-269(2010) [4] Khot, S., Regev, O.:Vertex cover might be hard to approximate to within 2-ε. J. Comput. Syst. Sci. 74(3), 335-349(2008) [5] Xia, G., Zhang, Y.:On the small cycle transversal of planar graphs. Theor. Comput. Sci. 412(29), 3501-3509(2011) [6] Xia, G., Zhang, Y.:Kernelization for cycle transversal problems. Discret. Appl. Math. 160(7-8), 1224-1231(2012) [7] Brügmann, D., Komusiewicz, C., Moser, H.:On generating triangle-free graphs. Electron. Notes Discret. Math. 32, 51-58(2009) [8] Tuza, Z.:A conjecture on triangles of graphs. Graphs Comb. 6(4), 373-380(1990) [9] Haxell, P.E., Kohayakawa, Y.:Packing and covering triangles in tripartite graphs. Graphs Comb. 14(1), 1-10(1998) [10] Haxell, P.E.:Packing and covering triangles in graphs. Discret. Math. 195(1), 251-254(1999) [11] Cui, Q., Haxell, P., Ma, W.:Packing and covering triangles in planar graphs. Graphs Comb. 25(6), 817-824(2009) [12] Haxell, P., Kostochka, A., Thomassé, S.:Packing and covering triangles in K4-free planar graphs. Graphs Comb. 28(5), 653-662(2012) [13] Chen, X., Diao, Z., Hu, X., Tang, Z.:Sufficient conditions for Tuza's conjecture on packing and covering triangles. In:Combinatorial Algorithms, Volume 9843 of Lecture Notes in Computer Science, pp. 266-277(2016) [14] Chen, X., Diao, Z., Hu, X., Tang, Z.:Total dual integrality of triangle covering. In:Combinatorial Optimization and Applications, Volume 10043 of Lecture Notes in Computer Science, pp. 128-143(2016) [15] Chen, X., Diao, Z., Xiaodong, H., Tang, Z.:Covering triangles in edge-weighted graphs. Theory Comput. Syst. 62(6), 1525-1552(2018) [16] Erdos, P., Stone, A.H., et al.:On the structure of linear graphs. Bull. Am. Math. Soc 52(1087-1091), 1(1946) [17] Brualdi, R.A.:Introductory Combinatorics, 5th edn. Pearson, New York (2009) |