[1] Team, C.W., Pachauri, R.K., Meyer, L.:IPCC, 2014:climate change 2014:synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, vol. 151(2014) [2] Charnes, A., Cooper, W.W., Rhodes, E.:Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429-444(1978) [3] Liu, J.S., Lu, L.Y., Lu, W.M., Lin, B.J.:A survey of DEA applications. Omega 41(5), 893-902(2013). https://doi.org/10.1016/j.omega.2012.11.004 [4] Mandell, M.B.:Modelling effectiveness-equity trade-offs in public service delivery systems. Manag. Sci. 37(4), 467-482(1991) [5] Lozano, S., Villa, G.:Centralized resource allocation using data envelopment analysis. J. Prod. Anal. 22(1), 143-161(2004). https://doi.org/10.1023/B:PROD.0000034748.22820.33 [6] Korhonen, P., Syrjänen, M.:Resource allocation based on efficiency analysis. Manag. Sci. 50(8), 1134-1144(2004) [7] Karsu, O., Morton, A.:Incorporating balance concerns in resource allocation decisions:a bi-criteria modelling approach. Omega 44, 70-82(2014). https://doi.org/10.1016/j.omega.2013.10.006 [8] Fang, L.:Centralized resource allocation based on efficiency analysis for step-by-step improvement paths. Omega 51, 24-28(2015). https://doi.org/10.1016/j.omega.2014.09.003 [9] Zhang, X.S., Cui, J.C.:A project evaluation system in the state economic information system of China:an operations research practice in public sectors. Int. Trans. Oper. Res. 6(5), 441-452(1999). https://doi.org/10.1016/S0969-6016(99)00009-X [10] Wei, Q., Zhang, J., Zhang, X.:An inverse dea model for inputs/outputs estimate. Eur. J. Oper. Res. 121(1), 151-163(2000). https://doi.org/10.1016/S0377-2217(99)00007-7 [11] Banker, R.D., Charnes, A., Cooper, W.W.:Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30(9), 1078-1092(1984) [12] Fare, R., Grosskopf, S.:A nonparametric cost approach to scale efficiency. Scand. J. Econ. 87(4), 594-604(2003) [13] Thrall, S.R.M.:Recent developments in DEA:the mathematical programming approach to frontier analysis. J. Econ. 46(1), 7-38(1990) [14] Jahanshahloo, G., Vencheh, A.H., Foroughi, A., Matin, R.K.:Inputs/outputs estimation in dea when some factors are undesirable. Appl. Math. Comput. 156(1), 19-32(2004). https://doi.org/10.1016/S0096-3003(03)00814-2 [15] Hadi-Vencheh, A., Foroughi, A.A.:A generalized dea model for inputs/outputs estimation. Math. Comput. Modell. 43(5), 447-457(2006). https://doi.org/10.1016/j.mcm.2005.08.005 [16] Amin, G.R., Emrouznejad, A.:Inverse linear programming in DEA. Int. J. Oper. Res. 4, 105-109(2007) [17] Zhang, M., Cui, J.C.:The extension and integration of the inverse DEA method. J. Oper. Res. Soc. 67(9), 5(2016). https://doi.org/10.1057/jors.2016.2 [18] Pastor, J., Ruiz, J., Sirvent, I.:An enhanced dea russell graph efficiency measure. Eur. J. Oper. Res. 115(3), 596-607(1999) [19] Tone,K.:Aslacks-based measureof efficiency in dataenvelopmentanalysis.Eur.J.Oper.Res. 130(3), 498-509(2001) [20] Green, C.:Potential scale-related problems in estimating the costs of CO2 mitigation policies. Clim. Change 44(3), 331-349(2000) [21] He, W., Yang, Y., Wang, Z., Zhu, J.:Estimation and allocation of cost savings from collaborative CO2 abatement in china. Energy Econ. 72, 62-74(2018). https://doi.org/10.1016/j.eneco.2018.03.025 [22] Yao, X., Zhou, H., Zhang, A., Li, A.:Regional energy efficiency, carbon emission performance and technology gaps in China:a meta-frontier non-radial directional distance function analysis. Energy Policy 84, 142-154(2015) |