[1] Kuster, C., Rezgui, Y., Mourshed, M.:Electrical load forecasting models:a critical systematic review. Sustain. Cities Soc. 35, 257-270(2017) [2] Tucci, M., Crisostomi, F., Giunta, G., Raugi, M.:A multi-objective method for short-term load forecasting in European countries. IEEE Trans. Power Syst. 31(5), 3537-3547(2016) [3] Hippert, H.S., Pedreira, C.E., Souza, R.C.:Neural networks for short-term load forecasting:a review and evaluation. IEEE Trans. Power Syst. 16, 44-55(2001) [4] Ceperic, E., Ceperic, V., Baric, B.:A strategy for short-term load forecasting by support vector regression machines. IEEE Trans. Power Syst. 28(4), 4356-4364(2013) [5] Metaxiotis, K., Kagiannas, A., Askounis, D., Psarras, J.:Artificial intelligence in short term electric load forecasting:a state-of-the-art survey for the researcher. Energy Convers. Manag. 44(9), 1525-1534(2003) [6] Huang, N., Lu, G., Xu, D.:A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies 9(10), 767-790(2016) [7] Lusis, P., Khalilpour, K.R., Andrew, L., Liebman, A.:Short-term residential load forecasting:impact of calendar effects and forecast granularity. Appl. Energy 205, 654-669(2017) [8] Dudek, G.:Pattern-based local linear regression models for short-term load forecasting. Electr. Power Syst. Res. 130, 139-147(2016) [9] Kan, G., Li, J., Zhang, X., Ding, L., He, X., Liang, K., Jiang, X., Ren, M., Li, H., Wang, F., Zhang, Z., Hu, Y.:A new hybrid data-driven model for event-based rainfall-runoff simulation. Neural Comput. Appl. 29(7), 577-593(2016) [10] Rafiei, M., Niknam, T., Aghaei, J., Shafie-khah, M., Catalao, J.P.S.:Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine. IEEE Trans. Smart Grid (2018). https://doi.org/10.1109/TSG.2018.2807845 [11] Chen, J.-F., Do, Q.H., Nguyen, T.V.A., Doan, T.T.H.:Forecasting monthly electricity demands by wavelet neuro-fuzzy system optimized by heuristic algorithms. Information 9(3), 51(2018) [12] Li, W., Yang, X., Li, H., Su, L.:Hybrid forecasting approach based on GRNN neural network and SVR machine for electricity demand forecasting. Energies 10(1), 44(2017) [13] Rahman, A., Srikumar, V., Smith, A.D.:Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks. Appl. Energy 212, 372-385(2018) [14] Zhang, B., Wu, J.L., Chang, P.C.:A multiple time series-based recurrent neural network for short-term load forecasting. Soft. Comput. 22(12), 4099-4112(2017) [15] Salkuti, S.R.:Short-term electrical load forecasting using radial basis function neural networks considering weather factors. Electr. Eng. 1, 1(2018). https://doi.org/10.1007/s00202-018-0678-8 [16] Yang, Y., Chen, Y., Wang, Y., Li, C., Li, L.:Modelling a combined method based on ANFIS and neural network improved by DE algorithm:a case study for short-term electricity demand forecasting. Appl. Soft Comput. 49, 663-675(2016) [17] Ryu, S., Noh, J., Kim, H.:Deep neural network based demand side short term load forecasting. Energies 10, 3(2017). https://doi.org/10.3390/en10010003 [18] Guo, G., Zhou, K., Zhang, X., Yang, S.:A deep learning model for short-term power load and probability density forecasting. Energy 160, 1186-1200(2018) [19] Wen,L.,Zhou,K.,Yang,S.,Lu,X.:Optimalloaddispatchofcommunitymicrogridwithdeeplearning based solar power and load forecasting. Energy 171, 1053-1065(2019) [20] Manera, M., Marzullo, A.:Modelling the load curve of aggregate electricity consumption using principal components. Environ. Model Softw. 20(11), 1389-1400(2005) [21] Ismail, N., Abdullah, S.:Principal component regression with artificial neural network to improve prediction of electricity demand. Int. Arab J. Inf. Technol. 13(1A), 196-202(2016) [22] Sun, L., Zhou, K., Yang, S.:Regional difference of household electricity consumption:an empirical study of Jiangsu, China. J. Clean. Prod. 171, 1415-1428(2018) [23] Kingma, D., Ba, J.:Adam:a method for stochastic optimization. In:International Conference for Learning Representations, arXiv:1412.6980v9(2017) |