[1] Polak, E.:On the mathematical foundation of nondifferentiable optimization in engineering design. SIAM Rev. 29, 21-89(1987) [2] Hettich, R., Kortanek, K.O.:Semi-infinite programming:theory, methods and applications. SIAM Rev. 35, 380-429(1993) [3] López, M.A., Still, G.:Semi-infinite programming. Eur. J. Oper. Res. 180(1), 491-518(2007) [4] Goberna, M.A., López, M.A.:Linear Semi-infinite Optimization. Wiley, Chichester (1998) [5] Jeyakumar, V., Luc, D.T.:Nonsmooth calculus, minimality, and monotonicity of convexificators. J. Optim. Theory Appl. 101(3), 599-621(1999) [6] Clarke, F.H.:Optimization and Nonsmooth Analysis. Wiley, New York, NY (1983) [7] Michel, P., Penot, J.P.:A generalized derivative for calm and stable functions. Differ. Integral Equ. 5, 433-454(1992) [8] Ioffe, A.D.:Approximate subdifferentials and applications, Ⅱ. Mathematika 33, 111-128(1986) [9] Treiman, J.S.:The linear nonconvex generalized gradient and Lagrange multipliers. SIAM J. Optim. 5, 670-680(1995) [10] Kabgani, A., Soleimani-damaneh, M., Zamani, M.:Optimality conditions in optimization problems with convex feasible set using convexificators. Math. Methods Oper. Res. 86(1), 103-121(2017) [11] Laha, V., Mishra, S.K.:On vector optimization problems and vector variational inequalities using convexificators. Optimization 66(11), 1837-1850(2017) [12] Kabgani,A.,Soleimani-damaneh,M.:Characterizationof(weakly/properly/robust)efficientsolutions in nonsmooth semi-infinite multiobjective optimization using convexificators. Optimization 67(2), 217-235(2018) [13] Alavi Hejazi, M., Movahedian, N., Nobakhtian, S.:Multiobjective problems:enhanced necessary conditions and new constraint qualifications through convexificators. Numer. Funct. Anal. Optim. 39(1), 11-37(2018) [14] Hanson, M.A.:On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545-550(1981) [15] Craven, B.D.:Invex function and constrained local minima. Bull. Aust. Math. Soc. 24, 357-366(1981) [16] Mishra, S.K., Giorgi, G.:Invexity and Optimization. Nonconvex Optimization and Its Applications, vol. 88. Springer, Berlin (2008) [17] Wolfe, P.:A duality theorem for nonlinear programming. Q. J. Appl. Math. 19, 239-244(1961) [18] Mond, B., Weir, T.:Generalized Concavity and Duality, Generalized Concavity in Optimization and Economics. Academic Press, New York (1981) [19] Mishra, S.K., Jaiswal, M., An, L.T.H.:Duality for nonsmooth semi-infinite programming problems. Optim. Lett. 6, 261-271(2012) [20] Pandey, Yogendra, Mishra, S.K.:On strong KKT type sufficient optimality conditions for nonsmooth multiobjective semi-infinite mathematical programming problems with equilibrium constraints. Oper. Res. Lett. 44(1), 148-151(2016) [21] Mishra, S.K., Singh, V., Laha, V.:On duality for mathematical programs with vanishing constraints. Ann. Oper. Res. 243, 249-272(2016) [22] Suneja, S.K., Kohli, B.:Optimality and duality results for bilevel programming problem using convexifactors. J. Optim. Theory Appl. 150, 1-19(2011) [23] Pandey, Y., Mishra, S.K.:Duality for nonsmooth mathematical programming problems with equilibrium constraints using convexificators. J. Optim. Theory Appl. 171, 694-707(2016) [24] Suh, S., Kim, T.J.:Solving nonlinear bilevel programming models of the equilibrium network design problem:a comparative review. Ann. Oper. Res. 34, 203-218(1992) [25] Luo, Z.Q., Pang, J.S., Ralph, D.:Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996) [26] Colson,B.,Marcotte,P.,Savard,G.:Aoverviewofbileveloptimization.Ann.Oper.Res. 153,235-256(2007) [27] Dempe, S., Zemkoho, A.B.:Bilevel road pricing:theoretical analysis and optimality conditions. Ann. Oper. Res. 196, 223-240(2012) [28] Raghunathan, A.U., Biegler, L.T.:Mathematical programs with equilibrium constraints in process engineering. Comput. Chem. Eng. 27, 1381-1392(2003) [29] Britz, W., Ferris, M., Kuhn, A.:Modeling water allocating institutions based on multiple optimization problems with equilibrium constraints. Environ. Model. Softw. 46, 196-207(2013) [30] Harker, P.T., Pang, J.S.:Finite-dimensional variational inequality and nonlinear complementarity problems:a survey of theory, algorithms and applications. Math. Program. 48(1-3), 161-220(1990) [31] Haslinger, J., Neittaanmäki, P.:Finite Element Approximation for Optimal Shape Design:Theory and Applications, p. xii. Wiley, Chichester (1988) [32] Dutta, J., Chandra, S.:Convexificators, generalized convexity and vector optimization. Optimization 53, 77-94(2004) [33] Soleimani-damaneh, M.:Characterizations and applications of generalized invexity and monotonicity in Asplund spaces. Top 20(3), 592-613(2012) [34] Pandey, Y., Mishra, S.K.:Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators. Ann. Oper. Res. 269, 1-16(2017) [35] Ansari Ardali, A., Movahedian, N., Nobakhtian, S.:Optimality conditions for nonsmooth mathematical programs with equilibrium constraints, using convexificators. Optimization 65(1), 67-85(2016) |